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The model introduced by Van den Broeck, Parrondo, and Toral [Phys. Rev. Lett.73, 3395 (1994)]—
leading to a second-order-likenoise-induced nonequilibrium phase transitionwhich showsreentranceas
a function of the (multiplicative) noise intensitys —is investigated beyond the white-noise assumption.
Through a Markovian approximation and within a mean-field treatment it is found that, in striking
contrast with the usual behavior for equilibrium phase transitions, for noise self-correlation time
t . 0, thestablephase for (diffusive) spatial couplingD ! ` is always thedisorderedone. Another
surprising result is that a large noise “memory” also tends todestroyorder. These results are supported
by numerical simulations. [S0031-9007(97)04161-6]
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Too often do we resort, in studying nonequilibrium sys
tems, to the paradigmatic body we have inherited from
equilibrium thermodynamics. Though most times this wa
of reasoning is of valuable help for us to interpret the re
sults, we should be more aware of the fact that sometim
it can be seriously misleading. An archetypical exampl
is the intuitive image we have developed of a close rela
tionship betweennoiseanddisorder, and betweenspatial
coupling (and also betweentime correlation) and order.
Regarding the first, whereas it is true that studies on, e.
Ginzburg-Landau models subject toadditive noise seem
to reinforce this “rule” [1–3], in the last decade we have
also witnessed examples of exactly the opposite trend
namely, dynamical systems in which amultiplicativenoise
couples to the system’s nonlinearities in such a way th
it generates a transition towards anorderedstate. In fact,
it is by now a well-known fact that the noise can induce
a unimodal-bimodal transition in some zero-dimensiona
models [4]; nevertheless, this result can still be argue
to be somewhat restricted since in this case there cann
be breakdown of ergodicity, which is required for a true
(nonequilibrium, noise-induced)phasetransition.
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Recently, a model was introduced whereby anextended
system subject to a Gaussian multiplicative noise—wh
both in space and time—can undergo a noise-induc
symmetry-breaking transition towards an ordered sta
this became the first example of apurely noise-induced,
nonequilibrium, orderingphasetransition [5]. This result
was obtained within a mean-field approximation and co
firmed afterwards through extensive simulations ind ­ 2
[6]. In this case, and at variance with the case of orde
disorder transitions at equilibrium (induced as we know b
the spatial coupling constantD and the bistability of the lo-
cal potential) it is the short-time instability induced by th
multiplicative noise intensitys —reinforced by the spatial
coupling D —which induces the transition. Neither the
d ­ 0 systemsD ­ 0d nor the deterministic oness ­ 0d
show any transition; moreover—and strikingly enough—
those systems exhibiting noise-induced transitions
d ­ 0 are automatically ruled out as candidates for th
phenomenon. Such a noise-induced phase transition
besides being of a second-order type as a function
the noise intensity—has the noteworthy feature of bei
reentrant: the ordered state can be found only insid
© 1997 The American Physical Society 2389
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a window determined by two values ofs. A similar
reentrant effect has been observed in the Ginzburg-Land
model with multiplicative and additive noises [7].

One can question whether it is realistic enough
consider a genuine multiplicative noise as white.
appears more likely that the kind of fluctuations leadin
to multiplicative noise—coming in general from the
coupling with an external source—will exhibit some
degree of spatiotemporal correlation [4,8–10]. Moreove
one should expect new nontrivial effects as a consequen
of the color of the multiplicative noise: after all—
whereas it was shown in Refs. [2,3] that anordering
nonequilibrium phase transition can be induced in
Ginzburg-Landau model by varying the correlation tim
of the additive noise—a reentrant behavior has been
found recently in asd ­ 0d colored-noise-induced tran-
sition [11].

It is our aim in this work to investigate the effects o
the self-correlation timet of the multiplicative noise on
the model of Refs. [5,6]. To that end we use an Ornstei
Uhlenbeck (OU) noise and apply, in the framework of
mean-field treatment, a “unified colored-noise approxim
tion” (UCNA) [12], together with an interpolation scheme
that extends its range of validity int [13]. Our main
finding is that—at variance with the usual behavior i
equilibrium statistical mechanics—a large coupling con
stantD leads invariably fort . 0 to a disorderedstate.
Since (as discussed thoroughly in Ref. [6]) the clue for th
phase transition seems to reside in an instability occurri
in the short-time behavior, and the model introduced
Ref. [5] was precisely chosen as a representative (perh
the simplest one) of a host of systems exhibiting such
instability—and hopefully, a noise-induced phase trans
tion with similar characteristics—this unexpected resu
warns experimentalists seeking for concrete realizatio
of this phenomenon not to tune naively the spatial co
pling intensityD up to a very large value (as one would
do guided by “experience”) but to look instead for an opt
mal value ofD for which the order parameter would take
its maximum value.

Another striking result is that—consistently with the
result in Ref. [11]—increasing the “memory,” i.e., the
self-correlation timet of the noise, does not favor (as one
would naively expect) the transition towards an ordere
phase but all the way around. This is indicated b
the following facts: (a) the threshold (critical) value o
s is a strongly increasing function oft, and (b) the
window in D available to the ordered phase strongl
shrinks as t increases. There is nonetheless a hi
that (as in Ref. [11]) a small amount of color could
induce order slightly beyond the upper critical value o
s corresponding tot ­ 0, but since the region in which
this phenomenon occurs is somewhat narrow, and t
comparison with simulations ind ­ 2—together with
finite-size scaling—made in Refs. [5,6] sheds much dou
on the precise location of this value, we prefer not t
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take this result too seriously for the moment (althou
it certainly deserves further analysis).

As in Ref. [5] we shall resort to a lattice version o
the extended system, whose state at timet will then
be given by the set of stochastic variableshxistdj si ­
1, . . . , Ldd defined at the sitesri of a hypercubicd-
dimensional lattice of sideL. The variableshxij obey
the following system of ordinary stochastic differenti
equations (SDE):

Ùxi ­ fsxid 1 gsxidhi 1
D
2d

X
j[nsid

sxj 2 xid , (1)

whereD is the lattice version of the diffusion coefficien
nsid stands for the set of2d sites which form the
immediate neighborhood of siteri , andhi is thecolored
multiplicative noise acting on siteri. This coupled set
of Langevin-like equations is the discrete version of t
partial SDE which in the continuum would determin
the state of the extended system, the last term be
replaced—in the continuum limit—by the Laplacia
operator =2x. The specific case analyzed in Ref. [5
(which the authors conjecture that could be the simpl
example exhibiting such a transition) is

fsxd ­ 2xs1 1 x2d2 and gsxd ­ 1 1 x2 . (2)

As in Refs. [2,11], the noiseshhij are taken to be OU
ones, i.e., Gaussian-distributed stochastic variables w
zero mean and the following correlations:

khistdhjst0dl ­ dij
s2

2t
exp

µ
2

jt 2 t0 j

t

∂
. (3)

In the limit t ! 0 the OU noisehistd tends to the
white noise j

W
i std with correlations kjW

i stdjW
j st0 dl ­

s2dijdst 2 t0d, which is the case studied in Ref. [5].
The non-Markovian character of the processhxij (due

to the colored noisehhij) makes it difficult to study.
However, there are some approximate Markovian te
niques that—whereas capturing some of the essential
tures of the complete non-Markovian process—stron
simplify the treatment of the equations, allowing us to e
ploit well-known Markovian techniques [10]. Amongs
those approximations, the UCNA and related interpo
tion schemes are very useful since they can reproduce
limits of small and large correlation timet [12,13]. As
discussed in Ref. [12] for a single SDE, the conditio
assumed in the UCNA indicate that its validity should d
crease with increasing noise intensity. On the other ha
regarding thet dependence, the UCNA becomesexactfor
t ! 0 and fort ! `. Although the interpolation proce
dure in Ref. [13] extends the validity range of this effe
tive Markovian approximation, it is still not clear how fa
it does so.

We now sketch the main lines of our calculation
more detailed account is given in Ref. [14]).
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(i) For our particular problem, the UCNA proceed
by taking the time derivative of Eq. (1) and—afte
substitution of the Langevin equations satisfied by the O
noise (t Ùhi ­ 2hi 1 sji , wherehjij are standard white-
noise variables)—setting to zero not onlÿxi (a usual
adiabatic elimination) but alsos Ùxid2, in order to recover
a proper Fokker-Planck equation (FPE) description [15

(ii) In order to reduce the complexity of the resulting
system of Markovian SDE, we make theapproximation
of replacing (under the hypothesis that the system
isotropic) in each equationof that set the2d variables
xj by a single oneyi .

(iii) Within the Stratonovich prescription we are lef
with the FPE for a bivariate steady-state probability di
tribution function (pdf)Pstsxi , yid. To the drift and dif-
fusion coefficients of this FPE we apply an approximatio
in the spirit of the Curie-Weiss mean-field type of ap
proach used in Ref. [5], so deriving an effective statio
ary joint pdfPstsx, yd (we have dropped the subindexi for
brevity), from which we derive a one-site pdfPstsx; kxld
by assumingPstsx, yd ­ Pstsxd dsy 2 kxld.

(iv) The value of kxl follows then from a self-
consistency relation similar to that of Ref. [5]:

kxl ­
Z

dx xPstsx; kxld . (4)

This equation has always the trivial solutionkxl ­ 0
corresponding to a disordered phase. When other sta
nontrivial, kxl fi 0 solutions appear, the system develop
order through a genuine phase transition andm ; jkxlj can
be considered as the order parameter (due to the symm
of the problem, both6kxl are solutions of the previous
equation). In the white-noise limitt ­ 0 this is known
to be the case for sufficiently large values of the couplin
D and for a window of values of the noise intensitys [
fs1, s2g.

We now discuss how the presence of ordered state
altered by nonzero values oft in the mean-field study.
Figure 1 shows, in the parameter subspaces-D, the
boundaries separating the ordered and disordered pha
for different values oft. The noteworthy aspects of this
graph are the following.

(i) For fixed s . 1 and t . 0 the ordered states can
exist only within a windowof values for D. In other
words, the noise-induced nonequilibrium phase transiti
exhibits reentrance not only with respect tos (as in the
t ­ 0 case) but also with respect toD.

(ii) For fixed D and s inside thet ­ 0 phase bound-
ary—as indicated, for example, by pointsad in Fig. 1—
there always exists a value of the correlation timet be-
yond which the system becomes disordered. Furthermo
there seems to exist a value oft . 0.123 beyond which
order is impossible, whatever the values ofs andD.

(iii) For fixed (and large enough) values ofD, and
for values ofs that would correspond to the disordere
phase fort ­ 0, a small increase int induces a transition
s
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FIG. 1. Projection of the mean-field phase diagram onto t
s-D plane, for t ­ 0 (continuous line),t ­ 0.015 (dotted
line), t ­ 0.05 (dashed line),t ­ 0.1 (dot-dashed line), and
t ­ 0.123 (triple dot-dashed line). For each curve, the order
zone is the area inside the curve (fort ­ 0 we have marked the
ordered and disordered regions with “o” and “d,” respectively).
Points sad and sbd correspond to the transitions referred to i
the text.

towards an ordered phase—as indicated by the po
markedsbd in Fig. 1. However, a further increase int can
again lead to disorder. In other words, the transition c
also be reentrant with respect tot. Regarding the reentran
nature of the transition with respect toD, in Fig. 1 it can
be seen that—ast increases from zero—the maximum
value ofD compatible with the ordered phase reaches,
s large enough, a “plateau” which is a decreasing functi
of t. At the same time, the minimum value ofD (that at
t ­ 0 goes likeD ~ s

2
2 ) tends also to become constan

as a function ofs ast increases, so shrinking the window
available for the ordered phase until it virtually disappea

Regarding the character of the transition att ­ 0, we
have checked that ast decreases the lower-left elbow
climbs up thes1 branch corresponding tot ­ 0, but
the slope of the correspondingt fi 0 branch is always
positive.

The previous features can also be inferred from t
behavior of the order parameterm. Plottingm vs s for a
fixed value ofD and different values oft, we would see a
general trend of the ordered zone to shrink and disapp
with increasing t. Whereas the lower critical value
s1 increases monotonically witht, the upper values2

first increases a little and then becomes a monotonica
decreasing function oft. This is, of course, consisten
with what occurs around pointsbd in Fig. 1.

Since the previous results have been obtained in
mean-field and UCNA approximations, and their rang
of validity is somewhat unclear, we have also perform
numerical simulations in order to have an independe
check of the predictions. As a representative exam
(corresponding to phenomenon (i) above—namely, t
destruction of the ordered phase by an increasing coup
constantD) we plot in Fig. 2m vs D as predicted by our
2391
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FIG. 2. Mean-field prediction for the order parameterm as a
function of the spatial couplingD, for noise intensitys ­ 2
and self-correlation timest ­ 0 (dashed line) andt ­ 0.01
(continuous line). Notice that whereas fort ­ 0 the curve
tends to the asymptotic valuess2 2 1d1y2 ­ 1.73, for t ­ 0.01
the order parameter seems to fall off rather abruptly to ze
for a large valueDMF of the coupling. Simulation results for
different system sizes:L ­ 16 (asterisks),L ­ 32 (diamonds),
and L ­ 64 (triangles) are also included, showing thatm
indeed decays to zero, although much slower and for a mu
larger “critical” valueDc.

mean-field theory, and results coming from a numeric
integration of the SDE, fors fixed and two values oft.
Although for t fi 0 the numerical results do not follow
the mean-field theory, it is obvious that there is an optim
value of the couplingD for which the order parameter
takes a maximum value, and that orderdisappearsfor D
large enough. From Fig. 2 one cannot decide whether
maxima will accompany thet ­ 0 curve ast ! 0. It
could well be that the phase transition att ­ 0 for s

fixed andD large enough be even afirst-orderone. This
certainly calls for further investigation.

We stress again the fact that these effects of a colo
multiplicative noise on an extended dynamical syste
(unable to undergo any phase transition in the absen
of noise) arequalitatively different to the ones observed
in (nonequilibrium) phase transitions driven by a colore
additive noise on a prototypic model for equilibrium phas
transitions [2,3]. Whereas in the last case the role of t
correlation time is tostabilize the ordered phase and/o
induce order in systems that are disordered fort ­ 0,
the main effect of color in our case is todestroyorder.
Also, we should not be turned back by the quantitativ
disagreement between the mean-field theory and
numerical simulations: it is known that in equilibrium
phase transitions, mean-field theory overestimates
ordered region and, for example, in the previous stu
of the same model with white noise [5,6], the mean-fie
prediction for the upper critical values2 for the reentrant
transition was thrice the one found numerically. Althoug
the numerical results are affected by finite-size effects
as one would expect in a second-order phase transition
one can see unambiguously in Fig. 2 the decrease of
order parameter with increasing couplingD, for t as
small as0.01.
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In order to understand this sudden change in behav
as soon as a tiny self-correlation is present, we ha
studied the time evolution equation forkxl (which is small
when the parameters are around the phase bounda
within the mean-field approximation, asDs2 ! `. In
Ref. [6] this simple linear (i.e., up to first order in
kxl) criterion of stabilization of the disordered phas
was introduced as a way of determining the region o
appearance of ordered phases. Fort ø 1 and D

s2 ! `

[we indeed assumetD ands2 to beOs1d], it reads

k Ùxl ­ 2akxl, with a ­
1 1 tD 2 s2

1 1 tD
. (5)

When 1 1 tD . s2 it is a . 0, and hence the disor-
dered phaseskxl ­ 0d is stable. On the other hand, if
1 1 tD , s2 it is a , 0, and it is the ordered phase
(kxl fi 0) which becomes stable. In summary, wherea
the noise intensitys has a stabilizing effect on the ordered
phase, as soon ast fi 0 the spatial couplingD tends to
destabilizeit. For t ­ 0 the last effect is not present, be-
ing then the condition for ordering thats . 1 (this is the
effect that was reported in Refs. [5,6]). Considering tha
the effect of even a tiny correlation is enhanced byD, we
can understand the abrupt change shown in Figs. 1 an
as soon ast fi 0.

This work has focused on the effects of a self
correlation in the multiplicative noise on the reentran
noise-induced phase transition reported in Ref. [5]. It a
pears that fort fi 0, a strong enough spatial coupling is
capable of destroying the order established as a con
quence of the multiplicative character of the noise. Th
foregoing result can be understood by recalling the fa
that the ordered phase arises as a consequence of
collaboration between the multiplicative character of th
noise and the presence of spatial coupling. When no se
correlation is present, the disordering effect ofD cannot
be felt. This explains the results in Ref. [6], which hav
been rightly interpreted in terms of a “freezing” of the
short-time behavior by a strong enough spatial couplin
As t increases, the minimum value ofD required to desta-
bilize the ordered phase becomes lower and lower. In th
way, the region in parameter space available to the o
dered phase shrinks further and further until it vanishes.

The main lesson one can draw from the prese
results is that the conceptual inheritance from equilibriu
thermodynamics (though often useful) is not alway
applicable. By following the equilibrium-thermodynamic
lore, one would tend to think that asD ! ` an ordered
situation is favored. This is certainly true for the Curie
Weiss-type models, since in that case the determinis
potential is itself bistable and an increase of spati
coupling has the effect of rising the potential barrie
between the stable states. In the case we are deal
with, the deterministic potential is monostable and it i
the combined effects of the multiplicative noise and th
spatial coupling that induce the transition.
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