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The model introduced by Van den Broeck, Parrondo, and Toral [Phys. Rev.7Be8395 (1994)]—
leading to a second-order-likemise-induced nonequilibrium phase transitiwhich showseentranceas
a function of the (multiplicative) noise intensity—is investigated beyond the white-noise assumption.
Through a Markovian approximation and within a mean-field treatment it is found that, in striking
contrast with the usual behavior for equilibrium phase transitions, for noise self-correlation time
T > 0, the stablephase for (diffusive) spatial coupling — <0 is always thedisorderedone. Another
surprising result is that a large noise “memory” also tenddestroyorder. These results are supported
by numerical simulations. [S0031-9007(97)04161-6]

PACS numbers: 05.40.+j, 05.70.Ln, 47.20.Ky, 64.60.—i

Too often do we resort, in studying nonequilibrium sys- Recently, a model was introduced wherebyeattended
tems, to the paradigmatic body we have inherited fromsystem subject to a Gaussian multiplicative noise—white
equilibrium thermodynamics. Though most times this wayboth in space and time—can undergo a noise-induced
of reasoning is of valuable help for us to interpret the resymmetry-breaking transition towards an ordered state:
sults, we should be more aware of the fact that sometimethis became the first example ofparely noise-induced,
it can be seriously misleading. An archetypical examplenonequilibrium, orderingphasetransition [5]. This result
is the intuitive image we have developed of a close relawas obtained within a mean-field approximation and con-
tionship betweemoiseanddisorder, and betweemspatial ~ firmed afterwards through extensive simulationg/is= 2
coupling (and also betweetime correlatior) andorder.  [6]. In this case, and at variance with the case of order-
Regarding the first, whereas it is true that studies on, e.gdisorder transitions at equilibrium (induced as we know by
Ginzburg-Landau models subject &mlditive noise seem the spatial coupling constantand the bistability of the lo-
to reinforce this “rule” [1-3], in the last decade we havecal potential) it is the short-time instability induced by the
also witnessed examples of exactly the opposite trend—multiplicative noise intensity-—reinforced by the spatial
namely, dynamical systems in whichraultiplicativenoise  coupling D—which induces the transition. Neither the
couples to the system’s nonlinearities in such a way tha# = 0 system(D = 0) nor the deterministic onér = 0)
it generates a transition towards areredstate. In fact, show any transition; moreover—and strikingly enough—
it is by now a well-known fact that the noise can inducethose systems exhibiting noise-induced transitions in
a unimodal-bimodal transition in some zero-dimensionakd = 0 are automatically ruled out as candidates for this
models [4]; nevertheless, this result can still be argueghghenomenon. Such a noise-induced phase transition—
to be somewhat restricted since in this case there cannbetsides being of a second-order type as a function of
be breakdown of ergodicity, which is required for a truethe noise intensity—has the noteworthy feature of being
(nonequilibrium, noise-inducegihasetransition. reentrant: the ordered state can be found only inside
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a window determined by two values ef. A similar take this result too seriously for the moment (although
reentrant effect has been observed in the Ginzburg-Landaticertainly deserves further analysis).
model with multiplicative and additive noises [7]. As in Ref. [5] we shall resort to a lattice version of
One can question whether it is realistic enough tathe extended system, whose state at timevill then
consider a genuine multiplicative noise as white. Itbe given by the set of stochastic variablas(s)} (i =
appears more likely that the kind of fluctuations leadingl, ..., L?) defined at the sitex; of a hypercubicd-
to multiplicative noise—coming in general from the dimensional lattice of sidd.. The variables{x;} obey
coupling with an external source—will exhibit some the following system of ordinary stochastic differential
degree of spatiotemporal correlation [4,8—10]. Moreovergquations (SDE):
one should expect new nontrivial effects as a consequence b
of the color of the multiplicative noise: after all— s _ N o 2 .
whereas it was shown in Refs. [2,3] that andering ¥i = fx) 4 gl + 2d Z (o = %), (D)
nonequilibrium phase transition can be induced in a ] ) ) o o
Ginzburg-Landau model by varying the correlation timewhereD is the lattice version of the dlﬁu§|on coefficient,
of the additive noise—a reentrant behavior has been (i) stands for the set oRd sites which form the
found recently in ad = 0) colored-noise-induced tran- immediate neighborhood of sit¢, and ; is thecolored
sition [11]. multlpllcatl_ve hoise acting on site;. This coup_led set
It is our aim in this work to investigate the effects of Of Langevin-like equations is the discrete version of the
the self-correlation time- of the multiplicative noise on Partial SDE which in the continuum would determine
the model of Refs. [5,6]. To that end we use an Ornsteinthe state of the extended system, the last term being
Uhlenbeck (OU) noise and apply, in the framework of areplaced—in the continuum limit—by the .LapIaC|an
mean-field treatment, a “unified colored-noise approximane_ratorVZx- The specific case analyzed in Ref. [5]
tion” (UCNA) [12], together with an interpolation scheme (Which the authors conjecture that could be the simplest
that extends its range of validity im [13]. Our main ~€xample exhibiting such a transition) is
finding is that—at variance with the usual behavior in . N2 . 2
equiligrium statistical mechanics—a large coupling con- fO) = =2 #2797 and glv) =1+x". (2

stantD leads invariably forr > 0 to adisorderedstate.  as in Refs. [2,11], the noiseén,} are taken to be OU

Since (as discussed thoroughly in Ref. [6]) the clue for thg)nes i e., Gaussian-distributed stochastic variables with
phase transition seems to reside in an instability occurringerg mean and the following correlations:

in the short-time behavior, and the model introduced in

Ref. [5] was precisely chosen as a representative (perhaps ; o [t — ¢']

the simplest one) of a host of systems exhibiting such an (ni(0)n; (1)) = &y 27 exr(—f) (3)

instability—and hopefully, a noise-induced phase transi-

tion with similar characteristics—this unexpected resultin the limit = — 0 the OU noise;(r) tends to the

warns experimentalists seeking for concrete realizationghite noise &V(1) with correlations <§,4"V(t)§}”(t’)> =

of this phenomenon not to tune naively the spatial couo?s;;8(¢+ — t'), which is the case studied in Ref. [5].

pling intensity D up to a very large value (as one would The non-Markovian character of the procdsg (due

do guided by “experience”) but to look instead for an opti-to the colored noisgn;}) makes it difficult to study.

mal value ofD for which the order parameter would take However, there are some approximate Markovian tech-

its maximum value. niques that—whereas capturing some of the essential fea-
Another striking result is that—consistently with the tures of the complete non-Markovian process—strongly

result in Ref. [11]—increasing the “memory,” i.e., the simplify the treatment of the equations, allowing us to ex-

self-correlation timer of the noise, does not favor (as one ploit well-known Markovian techniques [10]. Amongst

would naively expect) the transition towards an orderedhose approximations, the UCNA and related interpola-

phase but all the way around. This is indicated bytion schemes are very useful since they can reproduce the

the following facts: (a) the threshold (critical) value of limits of small and large correlation time [12,13]. As

o is a strongly increasing function of, and (b) the discussed in Ref. [12] for a single SDE, the conditions

window in D available to the ordered phase stronglyassumed in the UCNA indicate that its validity should de-

shrinks ast increases. There is nonetheless a hintrease with increasing noise intensity. On the other hand,

that (as in Ref. [11]) a small amount of color could regarding ther dependence, the UCNA beconmsactfor

induce order slightly beyond the upper critical value ofr — 0 and forr — «. Although the interpolation proce-

o corresponding ta = 0, but since the region in which dure in Ref. [13] extends the validity range of this effec-

this phenomenon occurs is somewhat narrow, and thve Markovian approximation, it is still not clear how far

comparison with simulations irl = 2—together with it does so.

finite-size scaling—made in Refs. [5,6] sheds much doubt We now sketch the main lines of our calculation (a

on the precise location of this value, we prefer not tomore detailed account is given in Ref. [14]).

Jj€n(i)
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(i) For our particular problem, the UCNA proceeds

by taking the time derivative of Eg. (1) and—after 140 3 O
substitution of the Langevin equations satisfied by the OU 120F
noise ¢n; = —n; + o&;, where{¢;} are standard white- 100 —

noise variables)—setting to zero not onty (a usual - 80F
adiabatic elimination) but als6r;)?, in order to recover ;

a proper Fokker-Planck equation (FPE) description [15]. 60 ]

(ii) In order to reduce the complexity of the resulting 40F
system of Markovian SDE, we make tlapproximation 20F |
of replacing (under the hypothesis that the system is oF . , , ,
isotropic) in each equatiorof that set the2d variables 0 2 4 6 8 10
x; by a single ong;. o

(iify Within the Stratonovich prescription we are left FIG. 1. Projection of the mean-field phase diagram onto the
with the FPE for a bivariate steady-state probability dis- plane, for - = 0 (continuous line),~ = 0.015 (dotted

tribution function (pdf)P*(x;,y;). To the drift and dif-  jine), = 0.05 (dashed line),r = 0.1 (dot-dashed line), and
fusion coefficients of this FPE we apply an approximationr = 0.123 (triple dot-dashed line). For each curve, the ordered
in the spirit of the Curie-Weiss mean-field type of ap-zone is the area inside the curve (for= 0 we have marked the
proach used in Ref. [5], so deriving an effective station-ordered and disordered regions W'ﬁb‘"‘a”d d’ reSp$Ct'Ve'y)- .
ary joint pdfP* (x, y) (we have dropped the subindefor Points(a) and (b) correspond to the transitions referred to in

brevity), from which we derive a one-site p#f’(x; (x)) the text.
by assumingPs(x,y) = P*(x) 8(y — (x)).
(iv) The value of (x) follows then from a self-
consistency relation similar to that of Ref. [5]: towards an ordered phase—as indicated by the point
marked(b) in Fig. 1. However, a further increase#rcan
(x) = f dx xP*"(x; {(x)). (4) again lead to disorder. In other words, the transition can

also be reentrant with respectto Regarding the reentrant

This equation has always the ftrivial solutign) = 0  nature of the transition with respect i, in Fig. 1 it can
corresponding to a disordered phase. When other stablbe seen that—as increases from zero—the maximum
nontrivial, (x) # 0 solutions appear, the system developsvalue of D compatible with the ordered phase reaches, for
order through a genuine phase transition ang: |(x)| can ¢ large enough, a “plateau” which is a decreasing function
be considered as the order parameter (due to the symmet§ 7. At the same time, the minimum value Df (that at
of the problem, botht(x) are solutions of the previous 7 = 0 goes likeD « &3) tends also to become constant
equation). In the white-noise limit = 0 this is known as a function obr ast increases, so shrinking the window
to be the case for sufficiently large values of the couplingavailable for the ordered phase until it virtually disappears.
D and for a window of values of the noise intensitye Regarding the character of the transitionrat= 0, we
[, 03] have checked that as decreases the lower-left elbow

We now discuss how the presence of ordered states @imbs up theo; branch corresponding te = 0, but
altered by nonzero values of in the mean-field study. the slope of the corresponding# 0 branch is always
Figure 1 shows, in the parameter subspace), the positive.
boundaries separating the ordered and disordered phasesrhe previous features can also be inferred from the
for different values ofr. The noteworthy aspects of this behavior of the order parameter. Plottingm vs o for a
graph are the following. fixed value ofD and different values of, we would see a

(i) For fixed o > 1 and 7 > 0 the ordered states can general trend of the ordered zone to shrink and disappear
exist only within a windowof values forD. In other with increasingr. Whereas the lower critical value
words, the noise-induced nonequilibrium phase transitiorr; increases monotonically with, the upper valuer,
exhibits reentrance not only with respectdo(as in the first increases a little and then becomes a monotonically

7 = 0 case) but also with respect . decreasing function of. This is, of course, consistent
(i) For fixed D and ¢ inside ther = 0 phase bound- with what occurs around poirib) in Fig. 1.
ary—as indicated, for example, by poigt) in Fig. 1— Since the previous results have been obtained in the

there always exists a value of the correlation timée- mean-field and UCNA approximations, and their range
yond which the system becomes disordered. Furthermoref validity is somewhat unclear, we have also performed
there seems to exist a value of> 0.123 beyond which numerical simulations in order to have an independent
order is impossible, whatever the valuessofind D. check of the predictions. As a representative example
(iii) For fixed (and large enough) values @, and (corresponding to phenomenon (i) above—namely, the
for values ofo that would correspond to the disordered destruction of the ordered phase by an increasing coupling
phase forr = 0, a small increase ift induces a transition constantD) we plot in Fig. 2m vs D as predicted by our
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2.0F In order to understand this sudden change in behavior
i L P as soon as a tiny self-correlation is present, we have
L e A studied the time evolution equation for) (which is small
s when the parameters are around the phase boundary)
€10, within the mean-field approximation, a&% — . In
) oy Ref. [6] this simple linear (i.e., up to first order in
0.5 Rao, (x)) criterion of stabilization of the disordered phase
0.0é . ¥ Eo5 & % 5 5 5 5, was introduced as a way of determining the region of
0 200 400 600 800 appearance of ordered phases. Fox l'and % — o0
D [we indeed assumeD ando? to beO(1)], it reads
FIG. 2. Mean-field prediction for the order parameteras a G) = —alx), with a = 1+7D-o° (5)
function of the spatial couplind, for noise intensityc = 2 ’ 1+ 7D

and self-correlation times = 0 (dashed line) and- = 0.01 2 i .
(continuous line). Notice that whereas fer= 0 the curve When1 + 7D > ¢~ it is @ > 0, and hence the disor-

tends to the asymptotic valde> — 1)!/2 = 1.73, forr = 0.01  dered phasé(x) = 0) is stable. On the other hand, if
the order parameter seems to fall off rather abruptly to zerd + 7D < o? it is a < 0, and it is the ordered phase
for a large valueDyr of the coupling. Simulation results for ((x) # 0) which becomes stable. In summary, whereas
g'rifderfni ngt‘(?trnasn'éfeg;) =arle6 gal‘ggeri'ﬁ'élsgge: 352hg:1?r’1‘;]°?ﬁ;2’ the noise intensity- has a stabilizing effect on the ordered
indeed decays to zero, although much slower and for a muc hase,__as_soon as# 0 the spatial Cogpllng) tends to
larger “critical” valueD... estabilizeit. For r = 0 the last effect is not present, be-
ing then the condition for ordering that > 1 (this is the
effect that was reported in Refs. [5,6]). Considering that
mean-field theory, and results coming from a numericathe effect of even a tiny correlation is enhancedbywe
integration of the SDE, forr fixed and two values of.  can understand the abrupt change shown in Figs. 1 and 2
Although for 7 # 0 the numerical results do not follow as soon as # 0.
the mean-field theory, it is obvious that there is an optimal This work has focused on the effects of a self-
value of the couplingD for which the order parameter correlation in the multiplicative noise on the reentrant
takes a maximum value, and that ordiisappeardor D noise-induced phase transition reported in Ref. [5]. It ap-
large enough. From Fig. 2 one cannot decide whether thpears that forr # 0, a strong enough spatial coupling is
maxima will accompany the = 0 curve ast — 0. It  capable of destroying the order established as a conse-
could well be that the phase transition at= 0 for &  quence of the multiplicative character of the noise. The
fixed andD large enough be evenfast-orderone. This foregoing result can be understood by recalling the fact
certainly calls for further investigation. that the ordered phase arises as a consequence of the
We stress again the fact that these effects of a coloredollaboration between the multiplicative character of the
multiplicative noise on an extended dynamical systemrmoise and the presence of spatial coupling. When no self-
(unable to undergo any phase transition in the absenamorrelation is present, the disordering effectidfcannot
of noise) aregualitatively different to the ones observed be felt. This explains the results in Ref. [6], which have
in (nonequilibrium) phase transitions driven by a coloredbeen rightly interpreted in terms of a “freezing” of the
additive noise on a prototypic model for equilibrium phaseshort-time behavior by a strong enough spatial coupling.
transitions [2,3]. Whereas in the last case the role of thés 7 increases, the minimum value Dfrequired to desta-
correlation time is tostabilizethe ordered phase and/or bilize the ordered phase becomes lower and lower. In this
induce order in systems that are disordered fo= 0,  way, the region in parameter space available to the or-
the main effect of color in our case is ttestroyorder.  dered phase shrinks further and further until it vanishes.
Also, we should not be turned back by the quantitative The main lesson one can draw from the present
disagreement between the mean-field theory and theesults is that the conceptual inheritance from equilibrium
numerical simulations: it is known that in equilibrium thermodynamics (though often useful) is not always
phase transitions, mean-field theory overestimates thapplicable. By following the equilibrium-thermodynamic
ordered region and, for example, in the previous studyore, one would tend to think that @& — « an ordered
of the same model with white noise [5,6], the mean-fieldsituation is favored. This is certainly true for the Curie-
prediction for the upper critical value, for the reentrant Weiss-type models, since in that case the deterministic
transition was thrice the one found numerically. Althoughpotential is itself bistable and an increase of spatial
the numerical results are affected by finite-size effects—eoupling has the effect of rising the potential barrier
as one would expect in a second-order phase transition-between the stable states. In the case we are dealing
one can see unambiguously in Fig. 2 the decrease of theith, the deterministic potential is monostable and it is
order parameter with increasing coupliiy, for  as the combined effects of the multiplicative noise and the
small as0.01. spatial coupling that induce the transition.
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