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Abstract 

We review some recent numerical studies of the Cahn-Hilfiard model in two dimensions, for 
phase separation with different values of the minority area fraction ~b. We find that dynamical 
scaling is satisfied at sufficiently late times for the pair correlation function, the structure factor 
and the droplet distribution function. We study how the shape of these scaling functions change 
with the area fractions and compare these results with available theoretical predictions. The time 
dependence of the characteristic length is consistent with an asymptotic growth law exponent 1/3 
for all area fractions. 

The process o f  phase separation that many mixtures, such as binary alloys, undergo, 
when quenched from a high-temperature, homogeneous state to a point below the co- 

existence curve, has been the subject of  many experimental, theoretical and numerical 
studies [ 1 ]. The subsequent evolution is greatly determined by the location of  the 

quench inside the phase diagram. In the classical picture, the so-called spinodal line 

divides the phase diagram according to the kind of  instability that might govern the 
dynamical process. For small volume fraction, ~b, of  the minority component, when 

the system is quenched between the spinodal and the coexistence lines, the system is 
unstable against localized, strong amplitude concentration fluctuations. In this situation, 

nuclei of  the minority phase are formed. These nuclei evolve with time in such a way 
that they would dissolve if their typical linear size is less than a certain critical length, 
and grow otherwise. In the spinodal decomposition region the system is unstable against 
long wave-length, small amplitude concentration fluctuations, which generate a deeply 
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interconnected pattern that coarsens with time. Although this simple picture is of general 
validity, one can not sharply separate the two regions below the coexistence curve, and 
the spinodal line merely serves as an indication to which process dominates [2,3]. 

While a complete understanding of this phase separation process, especially for the 
late-time behavior, is still lacking, numerical simulations have had a long tradition in 
studying this problem and have served as a useful guide to theoretical developments. 
In the Cahn-Hilliard model [4], the basic ingredient is a conserved concentration 
field 0 ( r ,  t) representing the difference in concentration of the two components of  the 
mixture. The time evolution of this field is given by the following equation: 

a O ( r , t )  ---- l V 2  [--0 "q- 03 -- V20] (1) 
Ot 

This complicated partial differential equation has so far defied analytical solutions valid 
for arbitrary time t. It seems, at this point, that the only way to extract reliable informa- 
tion concerning the late time behavior is by numerical studies. In this paper we review 
some of our work [5,6] on numerical studies of the Cahn-Hilliard equation in two 
dimensions. An extensive three-dimensional study including quenches for several values 
of the volume fraction is still lacking. One has to realize that the numerical integra- 
tion of the Cahn-Hilliard equation is very demanding in computer resources, even for 
two-dimensional systems, because the system has to evolve long enough time in order 
to reach the scaling regime and, as time increases, finite size effects become important 
if the system size is not large enough. The numerical studies proceed by discretising 
space by using a regular lattice of N = L 2 points and mesh size 6x. We have chosen a 
mesh size 8x = 1.0 for the Laplacian discretization on a square lattice of sizes varying 
between N = 5402 for area fraction ~b = 0.05 and 2562 for ~b = 0.21. With this choice 
for 6x we have found that droplets are circular in shape, whereas larger choices for 
8x produce anisotropic growth of droplets that reflect the underlying symmetry of the 
square lattice used in the numerical discretization. 

In Fig. 1 we show two typical configurations for two different values of the area 
fraction ~b. For q5 = 0.50, Fig. la, the initial field configuration was chosen to be 
random and uniformly distributed in the interval [ - 1 ,  1 ]. Note the presence of the 
deeply interconnected pattern characteristic of spinodal decomposition. For the smaller 
area fraction, q~ = 0.21, Fig. lb, one introduces strong concentration fluctuations by 
considering that the initial field is Gaussian distributed around the mean value 00 = 
1 - 2q~ and a variance of magnitude 5. Note that the irregular droplets evolve towards 
circular shapes at the late stages. Similar circular droplets are seen for ~ = 0.05. 

The structure formation in the system during the phase separation process is analyzed 
in terms of the normalized time-dependent structure factor s ( k ,  t): 

S ( k , t )  _ ( l J ~ - ~ r e - i k ' r [ O ( r , t ) -  <0)]12) 
s ( k , t )  =-- (02( t ) )  _ (0)z - (02(t))  _ (0)2 (2) 

We also compute the pair-correlation correlation function, g(r ,  t) defined as the Fourier 
transform of s ( k , t ) .  The above normalization procedure allows us to make a more 
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Fig. l. (a) Typical configuration from the numerical solution of the two-dimensional Cahn-Hilliard equation 
for area fraction ~b = 0.50 Black (white) regions denote a positive (negative) value for the field ¢(r, t). (b) 
typical configuration for ~b = 0.2 l. 

reasonable comparison of  the Shape of  the scaling functions for different area frac- 

tions, since the magnitude is normalized even though (~p) is different for different area 

fractions. 
As a measure of  the domain size, we have used the location of  the first zero of  

the correlation function. This is denoted by Rg( t ) .  In experimental studies for which 
the structure function is more directly accessible one uses instead the inverse o f  the 

location of  its maximum, k,,,. However, the lattice discretization used in the numerical 

studies makes it difficult to determine km precisely, and Rg(t )  can be determined much 

more accurately. Since at late stages clusters are circular in shape, the average radius of  

gyration also provides a reliable measure of  the characteristic domain size. 
An important development in the last several years [ 1,7,8] is the understanding that 

the late stages of  the phase separation process in various binary mixtures is characterized 

by one dominant length scale, R ( t ) ,  proportional to the average size of  the domains. 

One of  the few exact results in this field, the classical result of  Lifshitz and Slyozov [9] ,  
applicable when the volume fraction of  one of  the components of  the mixture is vanish- 

ingly small, predicts that the average domain size (as given by the mean value of  the 
minority phase droplet radius) behaves as R ( t )  N t]/3. This asymptotic t 1/3 growth-law 

has been extended for larger values of  the concentration [ 10]. Due to the existence of  
only one length scale, the late stage evolution of  the system can be described in terms of  
scaling with R( t ) .  Scaling implies that the circularly averaged pair correlation function 

and structure function depend on time through R( t )  only. Namely: 

g ( r , t )  = ~ ( r / R ( t ) ) ,  s ( k , t )  = R ( t )  a - J C ( k R ( t ) )  (3) 

where G(p )  and .T'(x) are time-independent scaling functions. In order to establish the 
universality classes of  this scaling description, it is important to determine whether and 
how the growth law and the scaling functions change as one varies the area fraction. 

In Fig. 2 we show the scaling functions for three values of  the area fraction. It is 
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Fig. 2. Plot of  the normalized pair-correlation function g ( r ,  t)  vs r/Rg (t) for three different values of  the area 

fraction ~b = 0 .50 ,0 .21 ,0 .05 ,  to check the scal ing ansatz in Eq. (3 ) .  The result  for ~b = 0.50 is taken from 
Ref. [23] .  From this figure it is clear  that the scaling function varies little between ~b = 0.50 and ~b = 0.21 

whereas  it changes significantly for ~b = 0.05. 

interesting to note that, despite the big change in morphology (see Fig. 1), for ~b = 0.5 
and ~b = 0.21, there is little change in the scaling functions, whereas the corresponding 
scaling function for ~b = 0.05 is clearly different from the others. The scaling function 
has also to be proven to be unaltered if one considers a concentration dependent diffusion 
coefficient [ 11 ]. The interesting feature of the scaling function for ~b = 0.05 is that the 
oscillations seen in the scaling function for larger volume fractions are almost absent 
here and the magnitude of the pair correlation function is very small for r > Rg. This 
suggests that the spatial correlations among the droplets are much weaker in this case, in 
agreement by theoretical predictions of Mazenko [ 12], although we note that Mazenko's 
results have only been worked out explicitly for three-dimensional systems. 

In Fig. 3 we plot the scaling functions for the unnormalized structure factors S(k, t). 
We observe that there is a strong dependence of the scaling function on the area fraction. 
For instance, the maximum of the structure factor decreases with the area fraction. These 
features are in good qualitative agreement with a recent theory by Tokuyama, Enomoto 
and Kawasaki [13] although a complete quantitative comparison with theory is very 
difficult since the theory breaks down for area fractions larger than ~b = 0.10. 

A detailed quantitative comparison can be made to the semiempirical model of Fratzl 
and Lebowitz [ 14]. In this model, the scaling functions are constructed in two stages: 
(1) the pair correlation scaling function is, in principle, modeled by the oscillatory 
decreasing function e -a r  sin (rS) / (rS) where .t is a constant proportional to the amount 
of the total interface present per unit area and 8 is another constant related to the typical 
domain size. (2) In order to incorporate the fact that, under very general circumstances, 
the structure function should behave as k 4 for small values of  k, the second stage 
consists of multiplying the Fourier transform of the above expression by the function 
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Fig. 3. Comparison of  the scal ing function obtained from the unnormalized structure factor S(k, t) with Rg(t) 
as the scaling length for various values of the area fraction. 

a2x4/(x, 4 -}- C2), a2 and cz being two constants. The final expression for the scaling 
function 5V(x) is then (in 2 dimensions): 

= a2 x4 ( (3_+_y2 ) [y+(3q_y2 ) l / 2 ] )  -1/2 
(4) 

where y = ( x  2 - 1 ) /b2 - 1 + d2 and d2 and b2 are constants depending on ,~ and 6. 

There are, in principle, four parameters in the above theory. Two of  them can be 
eliminated by requiring that the scaling function .T'(x) attains a maximum of  value 

unity at x = 1. That allows to eliminate two parameters, say a2 and c2 in terms of  
the other two. When comparing with simulation data, this rescaling procedure is also 
necessary in order to eliminate possible dependence of  the scaling function on the 

particular scaling length chosen. We are, then, left with two parameters, b2 and d2 

to fit the data. This two-parameter fit, however, is not flee of  problems because , as 

mentioned before, it is difficult to accurately determine the maximum of  the numerically 
determined scaling function f ' ( x ) .  Once this axes-rescaling has been performed, a least 

squares fitting of  expression (4) to the simulation data yields the following values for 
the parameters: b2 = 0.391, d2 = 0.644 for ~b = 0.50; b2 = 0.383, d2 = 0.932 for 
~b = 0.21 and b2 = 2.196, d2 = 0.528 for ~b = 0.05 (in this latter case of  ~b = 0.05 only 
values satisfying x > 1 have been included in the fit). Following Fratzl and Lebowitz, 
and considering that the value for d2 is not very critical for the fit, we can also fix 
the value o f  d2 to be a constant (d2 = 0.6) independent of  the area fraction, and 
consider b2 to be the only adjustable parameter. A least squares fit in this case yields 
b2 = 0.387, 0.371, 2.377 for ~b = 0.50, 0.21, 0.05, respectively. These values again 
confirm that the variation between the scaling functions for ~b = 0.50 and ~b = 0.21 is 
very small. Fig. 4 compares the scaling function f ' ( x )  with the theoretical prediction 
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Fig. 4. Comparison of the scaling function for the structure factor with the semi-empirical model calculation 
of Fratzl and Lebowitz [ 1411. Same symbols than in Fig. 3. Here we take the constant value d2 = 0.6 . The 
parameter b2 is changed as follows: b2 = 0.387 (solid line), 0.371 (dashed line), 2.377 (dotted line). See 
the text for an explanation of these parameters. 

for the latter values of the parameters mentioned above. The general agreement is 
rather good except, perhaps, for intermediate values of the scaling variables where the 
theoretical prediction is systematically larger than the simulation data and, in the case 

of  05 = 0.05 also for small values of the scaling variable x. 
One can define the function fR (R, t) as the probability distribution function of droplet 

radius R at time t. If  R(t)  is some given measure of the relevant system length (for 
instance, the mean droplet radius), the corresponding probability density function for the 

variable x0 = R / R ( t )  is fxo(XO, t) = R(t)  fR(R,  t). The dynamical scaling hypothesis 
affirms that this function is independent of time, for late enough times, i.e.: fx0 (x0, t) = 
fxo(Xo). We have checked that scaling is reasonably satisfied at late times (t  > 4000) 
both for for area fractions 05 = 0.21 and 05 = 0.05. The dynamical scaling for the cluster 
distribution function is obtained in the classical theory of Lifshitz and Slyozov, valid 
in the limit of vanishingly small volume fraction for three-dimensional systems. This 
theory neglects the spatial interaction between droplets. Many attempts have been made 
to systematically include the correlation among droplets in some approximate way in the 
theoretical calculations both for two and three-dimensional systems. The main features 
of these extensions is that the t 1/3 growth-law is unaltered but the shape of the droplet 
distribution function varies depending on the assumptions made. We now briefly review 
some of the main theoretical results. 

Rogers and Desai [ 1 5 ] carry out a simple extension of Lifshitz-Slyozov theory in two 
dimensions. However, in two dimensions, there seems to be no consistent steady-state 
result in the limit of 05 --+ 0. In the  non-steady-state calculation for 05 --+ 0, Rogers 
and Desai found an explicit scaling form for the droplet distribution function which 
we will loosely call the "Lifshitz-Slyozov (LS)"  scaling function in two dimensions. 
The theory of Ardell [ 16] includes the effect of diffusive correlations among nearest- 
neighbor clusters by introducing an ad hoc cutoff limit in the diffusion geometry. In 
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Fig. 5. Simulation data for droplet distribution function at the latest time (t = 20000) for ~b = 0.21 compared 
with various theories. 

the limit of ~b --+ 0, one also recovers the LS scaling form. For finite area fraction, 

the scaling function needs to be evaluated numerically. In Marqusee's theory [ 17], the 
surrounding droplets are considered as an "effective medium", the distribution function 
is derived in a self-consistent fashion and it needs to be evaluated numerically. Zheng 
and Gunton [ 18 ] have extended the previous theory by using a new expansion parameter 
(instead of ~b j/2 used by Marqusee). However, the range of validity of this theory is 

beyond the numerical simulations presented here since the authors expect that their 

scheme breaks down for q5 > 0.01. In the mean-field approach of Yao, Elder, Gut  and 

Grant [ 19], many droplet correlation effects are approximated in the same manner as 

the Thomas-Fermi approach for a Coulombic system. The authors found that, in two 
dimensions, their theory breaks down for area fraction ~b > 0.085 when the screening 

length is close to the average radius of droplets. 

In Fig. 5 we compare the predictions of different theories with the numerical data 
for volume fraction q~ = 0.05. From this figure we find that the LS scaling function 

is sharper and much higher in the peak than the corresponding numerical data. These 
discrepancies are expected since, as mentioned earlier, the LS results are only valid in 
the limit of zero volume fraction. For ~b = 0.05 we find that the data agrees reasonably 

well with the predictions of Yao et al and Ardell (actually the difference between these 
two theories is very small except near the peak). We note that there are small differences 
between the theoretical predictions and the numerical data both near the peak and the 
tail of the distribution. It seems that the location of the maximum is slightly different in 
the numerical distribution function. Since the uncertainties in the numerical results are 
larger near the tail of the distribution, it is difficult to judge whether the discrepancy 
near the tail is real or not. For area fraction ~b = 0.21, Marqusee's theoretical result 



48 Ratil Toral et al./Physica A 213 (1995) 41-49 

30 

25 

~ ,  2o 

I:~ 15 

10 

5 , I , I 
10 20 30 

tl/3 
Fig. 6. The characteristic domain size Rg(t) is plotted against t 1/3 for various are fractions 4 .  The solid lines 
are best fit to the data. The result for ~b =0 .50  is taken from Ref. [23] 

comes close to the simulation results. However, there appears to b e some systematic 
f differences between the data and the theory. It seems, then, that a complete theoretical 

description of the late-stage growth process in two dimensions is still incomplete and 
we hope that our numerical work would direct attention to this direction. 

We now turn our attention to the growth-law governing the characteristic domain size. 
The classical Lifshitz-Slyozov theory, based on a mechanism of evolution governed by 
bulk diffusion across the interfaces, predicts that the average droplet size behaves as 
t 1/3. This theory has been qualitatively extended by Huse [ 10] to the case of equal 
volume fraction of the two phases. On the other hand, the extensions to the Lifshitz- 
Slyozov theory mentioned before predict that the growth-law exponent remains unaltered. 
For critical quenches, it has been well established in the literature both by analytical 
calculations [20] and by large-scale computer simulations [21-23] that the asymptotic 
growth law exponent is 1/3. In Fig. 6 we find that the data for Rg(t)  can be fitted 
by a straight line against t 1/3 for three different area fractions, thus confirming that 
the asymptotic growth law exponent is 1/3. We can conclude that the growth exponent 
remains the same when the area fraction changes from a small value to the critical 
concentration. 
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