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We present results from a detailed Monte Carlo study of a two-dimensional off-lattice system of a dense
colloidal solution undergoing a diffusion-limited-cluster-aggregation (DLCA) process. We find that the dy-
namical structure factor, S(k,t), scales with the characteristic linear size of the aggregates, R(t), according to
S(k,t) =R§f57 (kR (1)), where Dy is the fractal dimension of the clusters and .% is a universal scaling func-
tion. We have verified that the shape of this scaling function compares well with the experimentally obtained
scaling function. Although this behavior is similar to the dynamical scaling law found in systems undergoing
spinodal decomposition, we find that some details of the evolution process of the DLCA model are quite
different from the dynamics of phase-separating systems.

PACS number(s): 64.75.+g, 05.40.+j, 64.60.Ht, 82.70.Dd

Dilute colloidal systems in a thermodynamically unstable
state have attracted considerable research interest during re-
cent years. Much theoretical and experimental effort have
been directed towards understanding the kinetic aspect of the
aggregation process, which leads to the formation of fractal
structures [1-4]. The evolution of these systems has been
successfully understood by the well known diffusion-limited-
cluster-aggregation (DLCA) model [5], where the initial col-
loidal monomers execute a Brownian motion until small
clusters are formed, and then the clusters themselves diffuse
and aggregate to form even larger clusters.

Recently, low-angle light scattering experiments [6,7] and
numerical simulations [8,9] in colloidal solutions of high
monomer concentration have shown a dynamical scaling be-
havior surprisingly similar to that observed in systems under-
going spinodal decomposition (SD). This result was quite
unexpected since, in dilute systems, scattering data showed a
maximum in the structure factor only at zero wave number,
indicating that, during the growth process, clusters are ran-
domly positioned in space and no correlation is established
between them. However, in concentrated solutions the scat-
tered intensity distribution shows a pronounced peak at a
finite value of the the wave, k,, . Furthermore, the position of
the peak moves to smaller values as the aggregation pro-
ceeds, while the peak intensity increases. In the later stages
of the aggregation process, the dynamical structure factor,
S(k,t), is found to scale according to the following form:

S(k,t) =k, PIF (kik,), (1)

where F () is a time-independent scaling function, and D is
the fractal dimension of the colloidal clusters. This scaling
form is characteristic of the physical systems undergoing SD
[10], except that the exponent in the scaling function is d,
the spatial dimension of the system, instead of Dy.

The purpose of this paper is to understand how the irre-
versible aggregation of colloidal particles in dense systems
may lead to the same type of dynamical scaling behavior
observed in SD processes. Also, one would like to find out

1063-651X/94/50(5)/3330(4)/$06.00 50

the similarity and the differences between the detailed dy-
namical evolution of the two types of systems. For this pur-
pose, we have carried out a detailed Monte Carlo simulation
of a DLCA model in a two-dimensional off-lattice system
with periodic boundary conditions. We find that the SD-type
dynamical scaling is satisfied in the DLCA model, while the
structure of the interface and the growth law for the charac-
teristic size of the clusters show nonuniversal features.

In the simulation, we have considered a cell of dimen-
sions L XL, where L is equal to 256 times the monomer
diameter, the unit of length considered here. We start by
randomly placing single particles in the cell, in such a way
that the area fraction occupied by the monomers covers 10%
of the total area available. Such area fractions compare well
with experimental values [7]. The excluded volume criterion
is assumed, so that the particles are not allowed to overlap
with each other. We have implemented a link cell (LC)
method [11] to efficiently compute the subset of clusters with
which a particular cluster interacts. The simulation process
continues, first by choosing at random one of the clusters
(initially the clusters are equivalent to single monomers), and
then this cluster is moved, by executing a translation motion
in a randomly chosen direction. If, during this motion, any
monomer in this cluster comes into contact with a monomer
in another cluster, these two clusters aggregate and form a
larger cluster. The geometry of the clusters is explicitly taken
into account during movements or aggregation. Time is mea-
sured in units of Monte Carlo steps per cluster (MCS).

In Figs. 1 and 2 we show snapshots during a typical evo-
lution process obtained from a DLCA model at late stages of
the aggregation process. These resemble the experimentally
observed structures in two dimensions [7] quite well. In
these figures one observes that the clusters grow by draining
material from their immediate neighborhood, thus creating
depletion zones around them. One expects, then, that this
general structure comprised of alternating clusters and deple-
tion regions may lead to a density modulation with a wave-
length of the order of the mean size of the clusters. This
particular observation can easily explain the peak of the
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FIG. 1. Snapshot at =25 MCS of a typical configuration during
the DLCA process. The monomers cover an area fraction of 10%.
Observe the depletion zones formed around the colloidal clusters.

structure factor at a finite k£ value. Figures 1 and 2 also sug-
gest that the aggregation process is self-similar in time, if
one does a time-dependent length rescaling. One can then
expect a dynamical scaling form for the structure factor simi-
lar to the one found in phase-separating systems.

In order to test the scaling hypothesis we have computed
the time-dependent structure factor defined as

1 )
S(k,r)=< Y [n(r+r')n(r'>—<n>2]>. @

FIG. 2. Same as Fig. 1 except that =100 MCS here.

FIG. 3. Plot of the universal function #(kRy(¢)) against
kR (1) at late stage of the aggregation process. The symbols refer to
the following: =30 (+); t=50 (*); t=60 (-); t=70 (©); t=80
(A); =90 (0); =100 (X). Note that all data collapse reasonably
well into a single master curve, supporting the scaling hypothesis
(see text) for the structure factor. Inset: log-log plot of S(k,t) for
large k values, demonstrating the fractal scaling at short length
scales, and yielding Dy=1.4*0.05.

In order to compute this quantity we have used a grid of
N=256X256 lattice points, and considered n(r) to be the
number of monomers having the integer part of their coordi-
nates equal to the lattice vertex r. We have then calculated
the circularly averaged structure factor S(k,t) from t=1
MCS to t=100 MCS. Data has been finally averaged over 20
different initial configurations. One now needs to determine
the position of the maximum of the structure factor, k,(?),
and the fractal dimension, Dy of the clusters, in order to test
the scaling hypothesis for S(k,t).

The fractal dimension Dy can be computed from the as-
ymptotic behavior of the structure factor for large k. Since
the colloidal structures are fractal aggregates, the large-k be-
havior of S(k,¢) has the following form [14]:

S(k,t)~k~Ps. 3)

The inset plot of Fig. 3 shows, in a logarithmic scale, a plot
of S(k,t) for large k at latest time. The best least-square fit to
the data yields an exponent of D ;=1.40%0.05 which is con-
sistent with the values found in the experiments [7] and two-
dimensional DLCA simulations [15,16].

The discrete nature of the lattice used to compute the
structure factor makes it difficult to precisely determine the
location of the peak of the structure factor, k,,(¢). Since the
inverse of this quantity should be proportional to the charac-
teristic linear size of the fractal aggregates, R (¢), we tried to
compute this latter quantity from the real space pair-
correlation function, G(r,t), which is the Fourier transform
of the structure factor S(k,#). As before, we consider a cir-
cularly averaged pair-correlation function G(r,t) and then
define a normalized correlation function: g(r,t)=G(r,t)/
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G(0,1). The characteristic length, R (¢), is then taken to be
the location of the first zero of g(r,t). The scaled form for
the pair-correlation function and the structure factor in terms
of Ry(t) can be written as

g(r,)=Fr/Ry()],S(k,1) =R\ FUkR(1)).  (4)

If the scaling hypothesis is satisfied, & p) and .#(£) should
be time-independent functions.

In order to verify the dynamical scaling ansatz for the
structure factor, Eq. (4), we have plotted in Fig. 3 the uni-
versal function #(kR,(t)) against kR (¢) (with D =1.40).
Note that the data fall remarkably well onto the same time-
independent scaling function [17]. We have verified that the
shape of this scaling function compares well with the experi-
mentally obtained scaling function [7]. As dynamical scaling
is verified, the peak of the structure factor, S(k,,,t), should
scale as a power law with the characteristic cluster size,
R,(t), where the exponent of this power law is equal to the
fractal dimension, D. The best least-square fit to the above
data in a logarithmic representation gives D;=1.38*0.04
which, within the error, is in good agreement with the one
obtained from the analysis of the structure factor for large k.
We can conclude then, that at late time, the scattering inten-
sity and the pair-correlation function are well described by
dynamical scaling forms [Eq. (4)].

The previous results, supporting dynamical scaling, have
suggested an underlying common mechanism in the dynam-
ics of this irreversible process, with that of phase-separating
systems. However, we point out that for binary mixtures un-
dergoing SD, the structure factor behaves as S(k,?)
~k~@*D for large k. This is the so-called Porod’s law
[12,13], which arises due to the presence of a sharp interface
between the domains [18]. As we have shown before, the
situation is completely different here, and S(k,t)~k P for
large k, due to the fractal nature of the clusters. Thus the
details of the interface structure are quite different in the
DLCA and the SD models.

We now show that the irreversible aggregation process in
dense colloidal systems leads to a completely different
growth law for the characteristic size of the clusters, when
compared to the growth law obtained for SD. In the latter
case, it is well established now that the growth law is given
by the Lifshift-Slyozov (LS) law [19], R(¢)~t'. For the
present model, we have computed the asymptotic growth law
exponent (a) for the characteristic linear cluster size,
R,(t)~1t%, by plotting in a logarithmic scale (see Fig. 4),
R(t) vs t. Aleast-squares fit gives an effective exponent of
a=0.7%0.1 at late times, which is quite different from the
LS type growth law observed in SD. As we show in the
following, the growth law exponent for the DLCA model is
not a universal quantity and depends strongly on the details
of the aggregation process.

The mean radius of gyration, R, of a fractal aggregate
satisfies R,~s(¢)"/?s, where s(¢) is the mean cluster size. If
we assume that the asymptotic behavior of s(z) can be writ-
ten as s(¢)~t#, we can derive the following algebraic rela-
tion among the exponents: 8= aDy. In order to get the value
of the exponent 3, we have computed s(¢) in our numerical
model and found that 8=1.2+0.1, (see Fig. 5) at late times.
Another way to independently check this value of B is to

TOMAS SINTES, RAUL TORAL, AND AMITABHA CHAKRABARTI 50

10

S

Ry(t)

100
t
FIG. 4. Log-log plot of the growth of the characteristic linear
size of the colloidal clusters, Rg(¢). The straight line is the least-

squares fit at late times which gives an effective growth exponent of
a=0.7%0.1 (see text).

compute it from S(k,,t). Since S(k,, ,t)~Rg(t)Df and
R, (t)~tPPr, we get S(k,,t)~tP. A log-log plot of
S(k,,,t) versus t yields 8=1.0%£0.1 which, despite the nu-
merical difficulty in precisely determining S(k,,,?), is in
agreement with our previous results. Note that, within the
errors, the relation between a, B, and Dy is also well satis-
fied.

The value of 8 can be found, in a mean field (MF) ap-
proximation, from the Smoluchowski coagulation equation
[20]. The estimated coagulation kernel for fractal aggregates
i and j, that coalesce upon contact, is given by [21]

1001 T T
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—
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FIG. 5. Log-log plot of the mean cluster size evolution, s(¢), vs
t. The data at late times are consistent with a power law with an
exponent B=1.2*0.1 (see text).
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1 1\¥2 the values obtained in our Monte Carlo simulations within
K(i,j)=A(iI/Df+i1/Df)d_l(l—-+ i (5) the error bars.

The first factor corresponds to the size dependence of the
collision cross section and the second one to the average
relative velocity on the reduced mass of the cluster. Here A
is a constant which depends on physical parameters of the
system such as temperature and density of particles. The evo-
lution equation for the mean size, s(#), can then be written
easily from the Smoluchowski equation [22,23], and we ob-
tain an asymptotic growth exponent B=2D;/[3Dy
—2(d—1)]. Ford=2 and D;=1.40%0.05, MF calculations
yield B=1.27*0.05 (and as a result a=0.92*0.06). We
should note that the MF approximation should be valid for
d>d_. =2 [22]. Since our model calculations are carried out
at the critical dimension, logarithmic corrections to the MF
results are expected to be present [22], which might reduce
the effective exponent 8 and a computed in the numerical
simulation. However, the MF results are in agreement with

In conclusion, we found that the scattering intensity for
the DLCA model for dense colloidal solutions satisfies a dy-
namical scaling behavior characteristic of a SD system.
However, there are important differences between the dy-
namics of the DLCA model and SD models. For example,
the interface structure of the two models is quite different, as
reflected in the behavior of the tail of the structure factor for
large k. Moreover, in SD the growth law exponent is 1/3
independent of the spatial dimension, while for DLCA the
growth law exponent is not a universal quantity and it does
depend on spatial dimensionality and the fractal dimension
of the clusters.
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