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We undertake a numerical study of the Flory-Huggins-de Gennes functional in 
d =  3 dimensions describing a polymer blend. By discretising the functional on 
a three-dimensional lattice and employing the hybrid Monte Carlo simulation 
algorithm, we investigate to what extent the inclusion of the term describing 
fluctuations in local polymer concentration alters the phase diagram of the 
model. We find that, despite the relatively small weight of the fluctuation term, 
the coexistence curve is shifted by an appreciable amount from that predicted by 
naive mean-field theory, which ignores such spatial fluctuations. The direction 
of the shift is consistent with that already observed in experiment and in simula- 
tions of microscopic models of polymer blends. A finite-size scaling analysis 
indicates that the critical behavior of the model seems to belong to the 3D Ising 
universality class rather than being mean-field in nature. 

KEY WORDS: Polymer blend; Flory-Huggins-de Gennes free energy; 
hybrid Monte Carlo; finite-size scaling. 

1. INTRODUCTION 

T h e  F l o r y - H u g g i n s  ( F H )  m o d e l  ~ 31 ha s  b e c o m e  a we l l - e s t ab l i shed  bas is  

for  the  t h e r m o d y n a m i c  d e s c r i p t i o n  of  A - B  p o l y m e r  mix tu res .  Its o r ig ina l  

f o r m u l a t i o n  cons i s t s  in p l ac ing  the  m o n o m e r s  a n d  so lven t  mo lecu l e s  o n  a 

la t t ice  a n d  so ha s  the  a d v a n t a g e  t h a t  the  e x c l u d e d - v o l u m e  c r i t e r ion ,  w h i c h  

is o t h e r w i s e  i n t r a c t a b l e  ana ly t i ca l ly ,  is a u t o m a t i c a l l y  a c c o u n t e d  for  by  

d e m a n d i n g  t h a t  e a c h  la t t ice  site be  o c c u p i e d  exclus ively  by  a m o n o m e r  o r  
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a solvent molecule. It is also well suited to allow for the large number of 
configurations available to each polymer. 

However, FH "theory" itself does not constitute a full solution of this 
lattice model, but is rather a mean-field approximation which incorporates 
a number of simplifications 141 over an above the assumption of an under- 
lying lattice structure. Within this mean-field approximation the free energy 
of mixing per lattice site in FH theory is, in the absence of vacancies, given 
byl ~) 

F 4' in r + ~_f_B~ ln(1 _ ~b) + X~b(1 _ r ) (1) fFH(r = ks-T-- NA 

where r (resp., 1 - r  is the local concentration of polymers of type ,4 
(resp., B), each consisting of NA (resp., NB) monomers; and where X is the 
so-called Flory-Huggins interaction parameter. In this formulation X is 
independent of r and of the length of the polymers; it is purely a function 
of temperature, X ~: 1/T. 

This, however, has proved to be one of the major deficiencies of the 
FH theory; experimental evidence has shown that, taking (1) at face value 
and interpreting X as a phenomenological parameter, one is left with an 
effective X, ~5~ which is a function of r and, possibly, of N. Numerical 
simulations of the lattice model ~<6~ from which the FH theory stems have 
also been at variance with the predictions of (1), showing that the failings 
of the theory must arise, at least in part, from the inherent mean-field 
assumptions used in obtaining ( 1 ) and are not necessarily due to the under- 
lying lattice model. Such discrepancies between the classical FH mean-field 
theory and experimental and numerical findings have led to the inclusion 
of refinements and extensions of the original theory/7 9~ 

One such extension, which we shall be concerned with in this study, 
involves a coarse-grained description of the polymer mixture in terms of 
the mean concentration r All fluctuations on small length scales, including 
the internal degrees of freedom of the polymers, are averaged out and 
only the slower, long-wavelength, spatial variations of r are included. This 
field-theoretic approach can be regarded as a type of Ginzburg-Landau 
formulation of the original problem. Specifically, the system is described by 
the Flory-Huggins-de Gennes (FHdG) free-energy functional ~~ 

~ [ r  ~ } 
- ; dx H(r (Vr 2 (2) 

ka T + 36~(x)[ 1 - r  

where the characteristic length a is given by a2/[r162 
l~/r162 with each A (B) polymer having subunits of length lA 
(IB). (In the particular case of lA = lB, one has a = / . )  The polymer aspect 
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is contained in the FH free-energy expression fvH [Eq. (1)], while the 
gradient term accounts for the free-energy contribution of spatial variations 
in the local concentration field ~b. This, however, is only the first term of an 
expansion which assumes that such spatial variations are slow, 112'13) SO (2) 
is only valid when the gradient term is small in comparison to the single- 
site contribution of fvH(~)- 

The FH mean-field theory is obtained from (2) by ignoring any such 
spatial fluctuations: ~(x)= ~MF, Vx, where ~Mv is that value of ~ which 
minimizes frH(~). We henceforth refer to this as the "bare" mean-field 
theory of the model; any spatial fluctuations in the local concentration field 

are neglected. An appealing aspect of this bare mean-field theory is that 
analytical expressions for thermodynamic quantities of interest are readily 
obtainable. In particular, one can obtain a closed expression for the 
coexistence curve on the phase diagram which separates the homogeneous 
one-phase region (where the two constituent types of polymers freely mix) 
from the two-phase regime (where the two types segregate, forming macro- 
scopic regions righ in each type of polymer). In fact the FHdG free energy 
was introduced in order to study the dynamics of phase separation follow- 
ing a quench into the unstable part of the phase diagram where the system 
evolves by spinodal decomposition. In this context, the FHdG free energy 
has been used in numerical studies of the Cahn-Hilliard-Cook evolution 
equations. (ta-~6) The dynamics of phase separation has also received recent 
attention in the context of lattice modelsJ t7 ~9~ 

Despite the availability of the full FHdG functional (2), most 
experimental and computational investigations adopt the simpler bare 
mean-field theory (1) as a reference point. However, given the aforemen- 
tioned shortcomings of this theory, it seems appropriate to determine to 
what extent the predictions of the full field-theoretic description (2) differ 
from (and improve upon) the mean-field theory. For example, even though 
the spatial term in (2) may be small, what effect does its neglect have on 
the phase diagram of the model? The location of the phase diagram is of 
fundamental importance in studying phase-separation phenomena in 
polymer mixtures, since the subsequent time evolution is determined by the 
position of the quench inside the coexistence curve. Although a Ginzburg- 
like criterion c2~ would imply that the FH theory is exact in the iarge-N 
limit, previous numerical studies of the FH lattice model 16) and a related 
bond-fluctuation model ~2j 23~ reveal large discrepancies with respect to the 
bare mean-field theory in the location of the critical point and the 
coexistence curve. 

In this contribution we want to determine the suitability of the FH 
theory to describe the equilibrium properties of a system defined by the 
FHdG free energy. We address this question by undertaking a numerical 
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study of (2) and comparing our estimates of thermodynamic variables with 
those predicted by the classical, bare FH theory. In particular, we deter- 
mine the phase diagram in terms of the FH interaction parameter Z and the 
polymer length N. We find that, as expected, the behavior of the system in 
the critical region is better described by the Ising critical exponents than 
by the mean-field ones. More interestingly, and in the same vein as the 
lattice-simultation results, our study shows important discrepancies far 
from criticality in the values of thermodynamic quantities, namely the 
order parameter and the susceptibility. Our study also demonstrates the 
convenience of the hybrid Monte Carlo method in sampling a complicated 
free energy functional. 

2. M E T H O D  

We restrict ourselves to the symmetric case in which the two 
constituent types of polymer are of identical sizes: N A = N B = N  and 
14=IA= 1 (--*a= 1). The functional integration (2) is performed numeri- 
cally on a three-dimensional lattice of L -~ vertices and mesh size Ax. In 
effect, we use the following discretized free energy: 

I. 1 1 2 
F[~b]=E(z ]x )3  fv, (~b,)+ 36~b,(1 @,)2 E(~-2-~s ] 
kBT x - y \  Ax ,/ J 

(3) 

where the 2d = 6 nearest neighbors of x are denoted by y. The thermodynamics 
ofthe system is given by the partition function ~ = j [d~b] exp( - F[(~]/k B T). 
In this symmetric case one has, from (1), 

1 
.[vH(~b) = ~ [~b In ~b + (I -~b)ln(1 -~b)]  + Zr -~b) 

Hence, (3) is symmetric under ~bx*--, l-q~,,.  The function fvH(~b) has a 
double-well structure, signaling the possibility of coexistence of the two 
phases, as in the case of the ~b 4 model. However, in contrast to the ~b 4 
model, in which the field can assume any real value, in the present case the 
concentration fields ~b x are restricted to the interval 0 ~< ~b, ~< 1. 

In order to sample the Boltzmann probability distribution P B ( [ $ ] ) =  
~ - ~  e x p ( - F [ $ ] / k a T ) ,  we employed the hybrid Monte Carlo (HMC) 
method. Originally proposed in the context of lattice gauge theories, c24~ this 
global-update algorithm has now become a well-recognized simulational 
tool in condensed-matter problemsJ 25~ A general advantage of the HMC 
method which is particularly useful in this problem is that it provides direct 
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access to the Boltzmann distribution and avoids the need to split up the 
functional (3) or to employ any approximative steps. 

Our strategy for obtaining the coexistence curve in terms of g and N 
was as follows. For fixed values of g we located the critical polymer length 
N, separating the homogeneous one-phase region from the two-phase 
region. We then determined the coexistence curve (the mean concentration) 
at values of N>N,., i.e., in the two-phase region. In bare FH mean-field 
theory the critical polymer length is simply given by N,Mv=2/Z and the 
coexistence curve is obtained by minimizing (1) with respect to ~b: 

F in . . . .  

Since (3) is invariant under ~bx~--~l-~b x, and hence is symmetric 
about ~b x=  ' 3, we define an order parameter M - L  3 Z x ( 2 ~ b x - 1 ) 6  
[ - 1 ,  1]. Here M is analogous to the "magnetization" per site in the dis- 
crete ~b 4 model and its distribution is symmetric about zero. In the one- 
phase region we have ( M ) =  0 (where ( . . . )  denotes a canonical average), 
while the two-phase region has ( M ) =  _+M .. . .  4=0. However, since for 
finite systems the free-energy barrier between these two minima in the free- 
energy distribution can never be infinite, the correct observable to measure 
for odd moments of M in a simulation is ([M]).126~ 

We have adopted a reparametrization in (3), in a similar vein to 
ref. 16, where x*=-(g-2/N)~/2x with A x * = l  is advocated. This has the 
effect of producing a larger Ax in the original parametrization (3) and thus 
helps ensure that the weight of the discretized gradient term is small com- 
pared to the contribution of fvH((~x). However, in the present study we 
wish to maintain a constant mesh size Ax for all values of ~( and N; such 
a ~- and N-dependent scale factor would complicate finite-size scaling 
analyses. We hence chose a fixed scale factor: one that would correspond 
to g=0.004,  N = 6 0 0  in ref. 16, i.e., x*~ x / 40 .  We found that with this 
parametrization the weight of the interaction term in (3) was mostly of the 
order of a few percent for the range of Z and N which we considered. 

3. C O M P A R I S O N  W I T H  M E A N - F I E L D  T H E O R Y  

In Fig. 1 we show, for fixed Z =0.004, the average order parameter 
( ] M I )  as a function of polymer length N for three different system sizes: 
L3=43,  83 , and 163 lattice sites. It can be seen that the location of the 
coexistence curve is, of course, also system-size-dependent in addition to 
being a function of ~( and N, i.e., we have M .. . .  = M  .. . .  (x;N, L). For 
increasing L, the curve approaches the N axis more steeply and in the 
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Fig. 1. The average order parameter ( I M [ )  as a function of polymer length N with a fixed 
value X = 0.004 of the Flory interaction parameter for different system sizes L 3. The solid line 
is the prediction of the mean-field theory. The dashed line is a fit to the behavior ( I M I ) ~  
I1 -N/N, . [  t~ with N,.= 544 and fl =0.324. 

thermodynamic limit, M . . . .  (X; N, oo), it would approach it vertically, 
vanishing at the critical polymer length N,.. For N <  N,. we are in the 
homogeneous one-phase region, with ( I M I ) = 0 ,  while above N,., in the 
two-phase region, we would have ( I M I ) =  M . . . .  (Z; N, oo)4=0. An estimate 
for the behavior of M .. . .  (Z; N, ~ ) ~  I1 -N/N, . I  tj is also given in the figure, 
as will be explained below. The L dependence of the curve becomes weaker 
as N increases away from N,. into the two-phase region. At these larger 
values of N, simulations with smaller system sizes therefore suffice in order 
to locate the coexistence curve accurately. 

The mean-field estimate for M .. . .  vanishes at N M F =  2/~(= 500. It is, 
however, obvious from the figure that both the values of the critical point 
and the location of the coexistence curve itself are overestimated by the 
theory. Note that, from the tendency of the curve to shift down and to the 
right as L increases (i.e., away from the mean-field curve), we can conclude 
that the curve for any given (finite) value of L provides a lower bound on 
the deviation from the mean-field theory. 

In order to obtain an estimate for the critical polymer length N,. given 
by (3), we first plotted the susceptibility Z , . - - L d ( ( M 2 ) - - ( I M I )  2) as a 
function of N in Fig. 2. This should diverge with increasing L as N--* N,.. 
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Fig. 2. Susceptibility in the same case as in Fig. 1. The solid line is the prediction of bare 
mean-field theory. Same symbols as Fig. 1. 

Also shown in the figure is the estimate given by the mean-field theory, 
which is 

N 
x M~ = ( 5 )  

l/C(1 - ~b) - 2Nx 

with r MF = r . . . .  from (4). This can be derived by adding an external field H 
in (1) to obtain f v n ( r  flHr where fl = 1/k B T. The mean-field solution is 

i MF) then given by f v n ( r  = flH, whence 

. M F x.Y ~ -  [ & b M F / o ( f l H ) ]  . = o  = 1/fvn(~ . . . .  ) 

An estimate for N,  is more readily obtained from the behavior of the 
ratio ( M 2 ) / ( I M [ ) 2 .  In the one-phase region this quantity approaches the 
limiting value x/2 as L ---, oo, whereas it approaches unity in the two-phase 
region, m) The rate at which it changes from one limiting value to the other 
increases with L as the critical region is traversed. Curves for different L 
(assuming L is large enough) should interest each other at the critical 
point, m)  From Fig. 3 we can conclude that 542 < N,. < 545. This is in good 
agreement with the estimates for the critical value which could be extracted 
from Figs. 1 and 2. 
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Fig. 3. The order parameter cumulant in the same case as in Fig. 1. The vertical dotted lines 
denote the bounds on the location of the critical point defined as the value of the polymer 
length N for which the cumulant is independent of system length L. 

Using these bounds on N,., we now investigate the finite-size scaling 
behavior of the model. Due to the increase in the range of the effective 
interactions with increasing length N in a real polymer mixture, it is 
expected from the Ginzburg criterion r176 that the region around the 
critical point in which Ising-like scaling behavior is displayed should shrink 
as N becomes larger. Outside of this region the mean-field approximation 
should hold and hence finite-size scaling behavior with mean-field 
exponents should be exhibited. Within the framework of the discretized 
model (3), with 7. fixed and 1IN an adjustable parameter (controlling the 
relative weight of the single-site coefficient), since the interaction term has 
a constant (N-independent) coefficient, we would expect such finite-size 
scaling behavior to be 

< IMI > = L - " f ( L ' ( I  -- N /N , ) )  (6) 

[Note that, unlike in a microscopic polymer model, the number of degrees 
of freedom in (3) is always L a, independent of N.] For Ising-like scaling 
behavior we would have, due to hyperscaling, u = 1/v and v = ~3Iv, ~27~ with, 
in d =  3 dimensions,/3 = 0.324 and v = 0.629, Izgl whereas the corresponding 
mean-field exponents would be u = d / 2 =  3/2 and v = d / 4 = 3 / 4 .  ~27~ Given 
the estimated location of N,  from Fig. 1, we have tested the validity of both 
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forms of  scaling in Fig. 2. Data  for L = 12 are also included. They were left 
out of  Fig. 1 in the interests of  clarity. Figure 4 shows the best data collapse 
obtained with the Ising exponents,  which occurs at N , .=  544. The corre- 
sponding data collapse with the mean-field exponents  is displayed in Fig. 5 
and occurs at N,.= 542. It is obvious  that the behavior is much better 
described by Ising-like finite-size scaling in this instance. The L ~ oo limit 
of  (6), given by ( I M [ )  oc [1 -N/N,.I ''/'', is also indicated both in Fig. 2 and 
in Fig. 1, where the Ising case gives v/u = ft. 

In order to ascertain whether the observed discrepancy of the model  
(3) with the predicted mean-field behavior (both with respect to the loca- 
tion of  the coexistence curve and the finite-size scaling) holds in general 
and is not just an artefact of  choosing,  e.g., "small" values of  N, we 
repeated the above  analysis for other, smaller values of  Z. Figure 6 is essen- 
tially of  the same form as Fig. 1, except that the N dependence on the 
horizontal  axis is displayed as 2/Nz. We have included data at two other 
values of  Z ( =0.001 and 0.002) in addition to those of  Fig. 1. A further set 
of  data, at Z =0 .03 ,  have been omitted in the interests of  c larity--their  
values lie between those of Z = 0.004 and X = 0.002. By plotting the data 
against 2/Nx we ensure that for any value of  Y there is only one  mean-field 
coexistence curve, which is displayed as a dotted-dashed line in the figure. 
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It can be seen from the figure that the discrepancy between (3) and the 
mean-field prediction increases with decreasing X, or equivalently, with 
increasing values of N. This implies that the mean-field coexistence curve 
will not be recovered in the N-o  co limit of the model (3). 

The only tendency away from Ising-like toward mean-field behavior 
that we observe on decreasing X (increasing N) is that the distinction 
between an Ising-like and a mean-field description of the finite-size scaling 
behavior is not so clear-cut. For the case of X = 0.001, as with X = 0.004, 
we also examined the ratio <M2>/<IMI> 2 to establish bounds on N,, 
obtaining 2285 < N,.< 2305. The resultant scaling forms are indicated in 
Figs. 7 and 8 for X =0.001 fixed. It is difficult to distinguish between the 
quality of the Ising-like scaling of Fig. 7 (with N,.= 2300) and the mean- 
field scaling of Fig. 8 (with N,, = 2290). 

Although we have adopted the strategy of holding Z fixed and study- 
ing the behavior of (3) with varying polymer lengths, we could equally well 
have held N constant and considered varying X. Physically, this should 
correspond to decreasing the temperature (assuming g were purely tem- 
perature-dependent) for a given polymer length. As a final case, in Fig. 9 
we fix N =  2000 and allow g to vary. Once again, a clear discrepancy can 
be seen between the observed coexistence curve and that predicted by 
simple mean-field theory. From the ratio of <M2>/<IMI >2 we estimate the 
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Fig. 12. 
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dashed line is a linear fit to the five data points, Z = 2.25/N. 

critical value of X to be 1 . 1 3 x 1 0 - 3 < x , < l . 1 6 x 1 0  -3 . The mean-field 
prediction, z ~ F =  2 I N =  0.001, thus underestimates Z,. by at least 13 %. The 
finite-size scaling behavior is seen to be better for lsing-like scaling (Fig. 10, 
Z,.= 1.142x 10 -3 ) than for mean-field scaling (Fig. 11, Z,.= 1.140x 10 3). 
In this case Z is the freely adjustable parameter controlling the weight of 
the single-site contribution in (3) relative to the interaction term, so we use 

< IMI  > = L - " f ( L ' (  1 - Z/Z,.) (7) 

with, once again, u = 1/v, v = fl/v for Ising-like behavior and u = d/2, v = d/4 
for mean-field scaling. 

From the above five cases--four at fixed g and one at fixed N- -we  
have plotted the corresponding five critical points in Fig. 12. Also indicated 
is the mean-field theory prediction N , ( X ) =  2/Z, or equivalently, Z , . (N)=  
2/N. Although the observed relation between N and Z deviates from this 
behavior, it is nevertheless described well by a linear relation Z,. oc N ~. 
We find X,. "" 2,25/N. 

4. DISCUSSION 

The above analysis has revealed that the inclusion of the fluctuation 
term in (2) can have a considerable effect on the location of the coexistence 
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curve, although the actual weight of the term compared to the single-site 
contribution remains relatively small. The observed shift in the coexistence 
curve, including the model's prediction of the critical point [N,.(Z) for 
fixed Z, or Z,.(N) for fixed N]  is an improvement over the naive mean-field 
solution of the Flory-Huggins lattice model in the sense that the correct 
tendency away from the mean-field result is displayed. The presence of the 
fluctuation term has the effect of enhancing the preference for of the one- 
phase solution, ~b = �89 since the prefactor multiplying ther square-gradient 
term in (2) displays a minimum at ~b = �89 Thus, in effect, the entropic ( l /N) 
term in fvn(~x) encouraging the disordered one-phase behavior ~b = �89 is 
strengthened, while the enthalpic (g) term, which promotes the ordered 
two-phase behavior, ~b = 0 or l, is weakened. This has the result that the 
critical point N,(Z) separating one-phase from two-phase behavior is 
increased (Fig. 6), or equivalently, Z,.(N) is increased (Fig. 9). It has already 
been observed (4"6'23) that the critical temperature lies below that predicted 
by mean-field theory. This is consistent with our observations, as an 
increase in Z,.(N) at fixed N would imply a decrease in T,., since Z" 1/T. 

While the discrepancy between the coexistence curve obtained from 
(2) and that given by mean-field theory is largest at the critical point of the 
model, the difference still remains significant reasonably far off criticality. 
For example, in Fig. 9, the curve is = 11% away from the corresponding 
mean-field prediction at ~ =  1.3 x 10 -3 ,  i.e., at 1.14Z, (=I.3z,.MV). Inter- 
estingly, in a recent publication Holyst and Vilgis (9) have found that, when 
fluctuation corrections are included in a self-consistent one-loop treatment, 
corrections to the naive mean-field prediction of the critical point can be as 
large as 10%, even for N up to ~ 10 4. 

Despite the improvements brought about by (3) over the naive mean- 
field results, the desired tendency toward mean-field behavior as N 
increases is not fully recovered: while it is true that a finite-size scaling 
analysis cannot distinguish between the mean-field and the lsing values for 
the critical exponents at the largest values of N (22000)  considered here, 
the discrepancy between the coexistence curve given by (3) and that of 
mean-field theory in fact worsens as N is increased (see Fig. 6). This no 
doubt stems from the fact that, as N increases, and so Z must corre- 
spondingly decrease, the relative weight of the fluctuation term in (3) 
increases. While for 2' = 0.004 we observed that the weight of the square- 
gradient term was no more than a few percent, at 2' = 0.001 it had increased 
to just over 10%. This is possibly an indication that here we are encroach- 
ing upon the bounds of validity of the model; recall that the gradient term 
should remains small in magnitude relative to the single-site contribution 
fVH" In this respect, the interaction term in (3), which has its source in the 
fluctuation term in (2), should really possess an N dependence or at least 
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an N-dependent interaction range, to recover the proper behavior in the 
N--, ~ limit. The effective interaction range in a polymer solution does, 
after all, increase with N. As it stands, the model (2) only expresses an N 
dependence via its entropic contribution in fvH. 

One feature of the bare mean-field solution which does, however, seem 
to remain intact on including spatial fluctuations is the relation 
/ , .(N) oc 1/N. Only the proportionality constant is affected: instead of 
/,.(N) = 2/N, our data (Fig. 12) suggest 2',.(N)=2.25/N. Such a deviation 
from mean-field theory has also been observedd in the bond-fluctuation 
model, where a linear relation between critical temperature and chain 
length was found to be maintained. ~22~ 

It may well be that, in order to observe the full crossover from lsing- 
like to mean-field scaling behavior, one would have to allow for a much 
larger variation in the corresponding crossover-scaling variable than we 
have attempted here. In the associated microscopic polymer model the per- 
tinent crossover variable would be given by l3~ (1 -Z/Z,.}/Gi oc (1 -Z/;(,.)N, 
where Gi oc I /N  is the Ginzburg number. Thus one would have to vary N 
over several orders of magnitude to guarantee observing a complete cross- 
over to mean-field critical behavior. Hence, while we certainly obtain Ising- 
like scaling behavior at our lowest values of N (~500),  our failure to 
observe unequivocal mean-field scaling at the largest values of N ( ~  2000) 
may be due to the fact that we cover only one decade in N. However, as 
mentioned above, this variation in N is apparently sufficient in order to at 
least manifest a trend away from Ising-like scaling toward mean-field 
scaling. 

Admittedly, one should not place too much importance on the obser- 
vation that the model (3) does not apparently display mean-field-like 
critical behavior, not even for large N-- the  model is, after all, only strictly 
valid when the concentration fluctuations are small. In the vicinity of the 
critical point this, of course, can no longer be true. Nontheless, the model 
(3) per se does display critical behavior and, as seen above, this is best 
described by the Ising universality class rather than that of mean-field 
theory. In any case, even away from the critical region, where the model is 
valid, the discrepancy between the coexistence curve of the model and that 
of mean-field theory is till significant. As mentioned above, there is still an 
11% discrepancy at ~ = 1.14Z,. ( =  1.3Z~ v) for N =  2000. This can have an 
important bearing on, for instance, off-critical quenches. Here this would 
correspond to a quench from the one-phase region into the two-phase 
region (i.e., from above to below the coexistence curve) at ~b:~ �89 If one 
were not performing a "deep" quench (to well below the coexistence curve), 
then an accurate knowledge of the actual location of the coexistence curve 
becomes very important and it may prove dangerous to use the estimate 
given by naive mean-field theory for its location. 
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