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We introduce a method based on the hybrid Monte Carlo (HMC) algorithm [S. Duane, A. D.
Kennedy, B. J. Pendleton, and D. Roweth, Phys. Lett. B 195, 216 (1987)] to sample the canonical
distribution in systems with a conserved order parameter. We show that the standard HMC method
and the one introduced here are special cases of a general class of HMC methods. As an application
we compute the scaling function of the interface excess energy for the ¢* model.

PACS number(s): 02.70.—c, 64.60.Cn, 68.10.Cr

The hybrid Monte Carlo (HMC) algorithm [1] was in-
troduced as an alternative to other computer simulation
methods [2] (such as Metropolis sampling, Langevin in-
tegration, or molecular dynamics) in order to sample the
equilibrium probability distribution given by the Gibbs
measure, exp(—H), for continuous models. The HMC
algorithm combines the standard acceptance or rejection
decision of the Metropolis algorithm with a molecular dy-
namics evolution for proposing new configurations. The
HMC algorithm was originally proposed for lattice gauge
theories because the global updating scheme minimizes
the number of computations of the Gibbs factor necessary
for the acceptance procedure (one of the main problems
in these theories). One of the main advantages of the
HMC methods is that their general formulation is appli-
cable to a great variety of systems, however complicated
the Hamiltonian H may be. Recently, they have been
used to study critical universality for the ¢* model [3] and
the equilibrium properties of a system of Lennard-Jones
particles [4] (these two papers discuss the advantages of
using HMC methods with respect to normal Monte Carlo
methods in the context of statistical physics). Further-
more, HMC methods are unbiased, in the sense that they
do not show any systematic discretization errors; the only
errors are of statistical origin and can consequently be di-
minished by increasing the number of samplings.

In this Rapid Communication we introduce a hybrid
Monte Carlo scheme suitable for studying systems with
a conserved order parameter. Our method shows all
the advantages of the standard hybrid Monte Carlo al-
gorithm, offering a very convenient way to study these
conserved-order-parameter systems. We also show that
the standard HMC method and the one introduced here
are particular cases of a general class of HMC methods.

The only previous Monte Carlo method known to us [5]
for studying continuous systems with a conserved order
parameter is a generalization of the Kawasaki exchange
dynamics for Ising systems [6]. However, the authors
in Ref. [5] did not use the method to study equilibrium
properties, but rather as an alternative to the numerical
integration of the Cahn-Hilliard-Cook [7] equation in or-
der to study spinodal decomposition in binary systems
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described by a continuous concentration field.

Conserved-order-parameter systems are defined by a
set of variables (¢1,¢2,...,¢n) = [#] such that the or-
der parameter ® = >, ; ¢; takes a fixed value. Index
i = (i1,42,...,1q) runs over the N = L% sites of a d-
dimensional hypercubic lattice, with periodic boundary
conditions. The statistical properties of the system are
defined by its Hamiltonian H[¢].

Let us briefly review the standard hybrid Monte Carlo
algorithm for nonconserved-order-parameter systems. In
these schemes one introduces a set of auxiliary variables
(p1,p2;---,0N) = [p]. Furthermore, one defines a canon-
ical mapping G, [¢,p] — [¢,p'] = G([#,p]) of phase
space. The new configuration [¢'] is accepted or rejected
according to the usual Metropolis criterion. In order to
sample the equilibrium probability distribution defined
by the Hamiltonian of the model, the method is con-
structed such that detailed balance is fulfilled.

The variables [¢] are considered to be generalized co-
ordinates and the auxiliary variables [p] are the conju-
gate momenta associated with a kinetic energy Hx =
Zf;l p?/2. The transformation G is conventionally de-
fined in terms of a suitable approximation to the Hamil-
tonian dynamics associated with the total Hamiltonian
H=Hg+H:

d¢; OH

_dt_ = “aE = Di; (1)
dpi _ OH _ o

dt o¢; v

where F;([¢]) = —0H /O¢; is the force acting on the vari-
able ¢;. The conservation of energy follows from this
Hamiltonian dynamics: dH/dt = 0. In [1] a leap-frog dis-
cretization is used to approximate the solution of the pre-
vious set of equations, thus introducing a discrete map-
ping G% dependent on the time step 6t:

#i=a:+5t (ni+ FRAD).

5t (2)
P =p;i+ E{Fi([‘p]) + F([¢'D}
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The mapping G is then defined as G = (G*)M, M
being the number of leap-frog steps. The time dis-
cretization causes a discretization error in the energy,
6E = H([¢', ")) — H([¢,p]), which can be controlled by
varying 6t and M. The resulting configuration [¢'] is then
accepted with a probability min{1, exp(—6F)} according
to the usual Metropolis algorithm. The key point is that,
since the Hamilton equations exactly conserve energy, the
discretization error 6 E can be made small so that the
average acceptance probability can be adjusted to a rea-
sonable value. In order to fulfill detailed balance [1] the
following (sufficient) conditions are required.

(i) The mapping G® must be time reversible, i.e., if
[6',2/] = G*(1$,p]) then G(¢/, —p']) = [, D).

(i) The mapping G% must be area preserving, i.e., the
Jacobian associated with the transformation must have
unit determinant, |J([¢’,p']/[¢,p])| = 1.

(iii) The momenta variables [p] must be refreshed after
each acceptance/rejection (i.e., after M leap-frog steps)
according to the distribution exp(—H) (a Gaussian dis-
tribution for independent random variables).

It turns out that the mapping defined by the leap-frog
approximation [1] to the solution of the Hamiltonian dy-
namics satisfies properties (i) and (ii) above. However,
the order parameter @ is not conserved. We propose a
modification of the previous algorithm, which, still fulfill-
ing the previous requirements needed to satisfy detailed
balance, leaves the order parameter ® conserved. The
modification goes as follows: to every field variable ¢;, we
assign a vector variable p; = (p},p?,...,p?) of dimension
d (the space dimension). The associated kinetic energy
is then Hx = E:\;1 | pi |2 /2 and the total Hamiltonian
is again H = H + Hg. The next step is to substitute
the previous Hamiltonian based mapping by one based
on the following set of equations:

d¢i=vR‘{aH}=VR_pi

dt op;
(3)
dp; oH _
T _VL{&;»} VLF;, 1=1,...,N
or, in more compact notation,
d¢
dt "‘VR o2
(4)
dp
T —V_LF.

Here, Vg and V[, are the lattice gradient operators de-
fined as VRfl = (fi+1 - fi7 fi+2 - fi»' . 7f'i+d - fz) and
Vifi = (fi— fico, fs — ficas- o fi — fi_y), where iy
and i_ are the two nearest neighbors of the site ¢, in the
direction k, i.e., i1 = (41,...,ik £ 1,...,14) (remember
that periodic boundary conditions are assumed). The
kth component (k = 1,...,d) of vector operator Vg,
V%, is an N x N matrix, A*. One has A% = T% — 1,

being the matrix associated with the translation op-
erator in direction k. The A* components are explicitly
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given by (A*);; = 6(isk,5)—8(s,7), 6, ]) being the Kro-
necker delta function. Analogously, if B* is the matrix
associated with V%, then B =1 — (7%)~!. Since T* is
orthogonal, one has Bk = —(AR)T.

An interesting and essential property of Egs. (3) is
that although they are non-Hamiltonian, they still ex-
actly conserve the energy H, i.e., d’H/dt = 0. Moreover,
the order parameter is also conserved during the evolu-
tion, d®/dt = 0.

We introduce a mapping G, defined in terms of the
leap-frog approximation to the solution of Egs. (3):

P;=¢i+6t VR - (Pi - %VLF'L'([¢])) ,

(5)
pi/=pi— 5 Vi{F(4) + F(D}

It is trivially proven that this mapping still exactly con-
serves the order parameter. Furthermore, the discretiza-
tion (5) satisfies the properties mentioned above: (i) it
is time reversible; (ii) it is area preserving, i.e., the [(d +
1)N x (d+ 1)N] dimensional Jacobian |J([¢', p']/[¢, P])|
is equal to (iii) the detailed balance condition is
then fulﬁlled 1f after M leap-frog iteration steps the
change in energy 6 E = H([¢/, p']) — H([#, p]) is computed
and the configuration [¢'] is accepted with probability
min{1,exp(—6F)} and if the momenta variables [p] are
then refreshed according to the Gaussian distribution
exp(—Hx).

As before, the mapping Gc is defined as an itera-
tion of the basic mapping G& after M leap-frog steps,
Gc = (G&)M. We have hence constructed a mapping
Gc given by M iterations of the transformation (5),
which is an approximation to a set of differential equa-
tions that exactly conserves the energy, fulfills all the
conditions required for satisfying detailed balance and
conserves the order parameter. This is the main result
of this Rapid Communication.

We will now rewrite the algorithm in a more general
form. We notice that, since the matrix associated with
operator —V% is (A¥)T, Egs. (4) can be written as

D
-3t
k=1
(6)
dp* kT
= F =1,...,D
dt (A ) ) k ] )
with D = d. We can now consider these equations as

the basic ingredient for constructing a variety of hybrid
Monte Carlo methods by considering that the matrices
Ak for k=1,...,D, are arbitrary matrices and that
the number D of auxiliary variables (p!,...,p") need
not be equal to the space dimension d. First of all, let
us note that these equations still exactly conserve the
energy for any set of matrices A¥, dH /dt = 0. The leap-
frog approximation to the solution of these differential
equations is
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2 K,k (6t) & k( gk\T

¢ =046ty APt + = ARANTF(g),
k=1 k=1

(7)

P = + (AT (F(S) + F(9)).

It is easily proven that the mapping Gi{ associated with
this transformation is also time reversible. By refreshing
the variables (p*,...,pP) after M leap-frog steps accord-
ing to the Gaussian distribution exp(—Hg) and using the
usual Metropolis acceptance rules, we also satisfy prop-
erty (iii) above. By using different matrices A* with
different symmetries, different ensembles could be simu-
lated. The case D = 1, A = 1 corresponds to the usual
hybrid Monte Carlo method. If A* = 7% —1 and D =d
we reproduce the conserved-order-parameter method in-
troduced in this work. It is possible to include long-range
correlations in matrices .A* in such a way that the up-
dating has an important nonlocal component. It might
then be conceivable that an appropriate choice of the
set of matrices A* would result in algorithms in which
the autocorrelation time can be reduced [8]. In fact, the
approach given here extends and makes “exact” (in the
sense of being independent of the discretization step) pre-
vious algorithms based on approximations to generalized
Langevin equations with a matrix time step [9].

Let us now come back to the conserved-order-
parameter algorithm introduced above, i.e., take A* =
Tk —1 and D = d. With this choice of matrices, the
requirement D = d is necessary in order not to introduce
any spurious conservation laws. If we had used D =1 in-
dependent of dimension d, then we would have had con-
servation for the magnetization along every row of the
system. With the choice of matrices given here and by
using D = d we ensure that the only linear conservation
law is that of the total magnetization.

Further insight into the method is given by noticing
that, if the number M of leap-frog steps equals 1, an
interesting relation is obtained with the Cahn-Hilliard-
Cook (CHC) dynamics [7]. In this case, the variables
[p] are refreshed every time step and their evolution can
be effectively neglected (after they have been used in
the Metropolis acceptance step) and they can be consid-
ered simply as independent random variables following
the Gaussian distribution. In this case of M = 1, the
evolution equation for the field variables is

(61)°
2

where the new random variable §; = Vg - p; has mean
zero and (&;£;) = —Ab(4,5), where A = Vg -V is the
lattice Laplacian operator. This is to be compared with
the Euler discretization of the CHC equation for a time
(7)-dependent field ¢;(7)

¢ =i — AF;([4]) + 6t&i, (8)

86:
—"Zf) = —AF(7) + V26(r), 9)
where the noise term satisfies the correlations

(&(T)E; (1)) = —A6(3,5)6(7 — 7'). The Euler discretiza-
tion reads [10]
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bi(T + 67) = ¢s(7) — 6TAF;(1) + V267€,(7).  (10)

This equation is similar to Eq. (8), provided the time step
67 used in the Euler method is taken to be (6t)2/2. We
could say that the acceptance step in the HMC method
makes the Euler approximation to the CHC equation “ex-
act” in the sense that the equilibrium statistical proper-
ties are unbiased and independent of the time step used
in the numerical integration. A similar relation holds be-
tween the nonconserved HMC algorithm and the model-
A Langevin equation [11].

As an application we have considered the ¢* model in
two dimensions, which is given by the Hamiltonian

18
n=y (-3 +fetegivenr].

Here, x is considered to be constant and 8 is some func-
tion of temperature such that high values for 6 cor-
respond to a low-temperature point in the phase dia-
gram. To every value of x corresponds a critical point
defined by a value 8 = 6.(x). We have used both
the Hybrid Monte Carlo conserved-order-parameter and
nonconserved-order-parameter algorithms to sample the
equilibrium probability distribution of the model near
the critical point for x = 1, 8, = 1.265(5) [12]. We have
used in all our simulations extrapolation techniques[13]
applicable to the canonical distribution that allow one
to draw continuous curves from a set of simulation data.
For the conserved case, simulations are made with the
zero-order parameter, i.e., zero magnetization. The con-
served system develops at equilibrium two interfaces, sep-
arating regions of opposite magnetization sign. These
interfaces become sharper as the temperature is low-
ered. We have computed the excess energy, given by

Ae/L
2.0
-0.05 0.00 0.05 0.10 0.15 0.20 /jf‘ﬁ:‘
1.5F € e
7
1.0f
—-1.0 -0.5 0.0 0.5 1.0
eL
FIG. 1. Plot of the excess energy Ae divided by system

side L as a function of the variable z = Le = L(1 — 6./0) for
different values of L to check the scaling property of the excess
free energy: L = 16, dotted line; L = 24, dashed line; L = 32,
dashed-dotted line; and L = 40, dashed-triple-dotted line. In
this plot, the value 6. = 1.268, consistent with the results of
Ref. [12], is used. The lines have been obtained by extrapola-
tion using the techniques in Ref. [13] using two independent
simulations at two different values of 6 for every value of L.
The inset shows the raw data before scaling (including the
data corresponding to the L = 8 continuum line).
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Ae = (Ec — Enc)/2, where Ec and Enc denote the
mean energy of the conserved- and nonconserved-order-
parameter systems, respectively. This excess energy is
related to the interface tension Fg of the model by

Ae/LA = Z(5Fs), (12)

where 3 = 1/(kgT). For an infinite system, the inter-
facial tension vanishes at the critical point with a power
law of exponent p [14]:

s = Fo (1—¥)u, (13)

whereas for a finite system it depends on a finite-size
scaling function X(x):

Fs(L,€) = e#S(LY"e), (14)

where v is the correlation length critical exponent and
€ =1—6:(x)/6. From the last three equations it can be
deduced [15] that for € ~ 0 and large L, Ae(L,¢€)/L is
expected to be a scaling function of the variable z = Le
(for the d = 2 case considered here we have used the
known values [14] for the exponents v = 1 and p = 1).
In Fig. 1 we have plotted Ae(L,¢)/L as a function of the
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variable z. A good collapse of the points is obtained using
for 6. the value 1.268, which lies inside the error bars of
Ref. [12]. Although the scaling behavior for the interface
free energy or the interface tension has previously been
studied numerically for the Ising model [15, 16], this is,
to our knowledge, the first verification of this scaling law
for the ¢* model.

In conclusion, we have derived a method to study
numerically conserved-order-parameter systems. This
method can be regarded as an “exact” integration of
the CHC equation in the stationary (equilibrium) state.
As an application we have computed the excess interface
energy of the ¢* model, reproducing the expected scal-
ing behavior. Furthermore, it was shown that both the
conserved-order-parameter and the nonconserved-order-
parameter HMC algorithms are special cases of possible
HMC algorithms generated by more general dynamics.

Financial support from the Direccién General de In-
vestigacién Cientifica y Técnica (Grant No. PB-89-0424,
Spain) and INIC, Portugal, are acknowledged. We thank
B.M. Forrest and B. Mehlig for a critical reading of the
manuscript. A.L.F. would like to thank D.W. Heermann
for stimulating discussions on the field of HMC algo-
rithms and R. Toral is thankful for the warm hospitality
at the Departamento de Fisica, Universidade do Porto,
where this work was carried out.

* Present address: Institut d’Estudis Avancats de les Illes
Balears and Departament de Fisica, Consejo Superior de
Investigaciones Cientificas, and Universitat de les Illes
Balears, 07071-Palma de Mallorca, Spain.

[1] S. Duane, A. D. Kennedy, B. J. Pendleton, and D.
Roweth, Phys. Lett. B 195, 216 (1987).

[2] See, for example, M. H. Kalos, and P. A. Whitlock, Monte
Carlo Methods, Vol. I: Basics (Wiley, New York, 1986);
M. P. Allen and D. J. Tildesley, Computer Simulation
of Liquids (Clarendon, Oxford, 1987); K. Binder, Monte
Carlo Methods in Statistical Physics (Springer-Verlag,
Berlin, 1986).

[3] B. Mehlig and B. M. Forrest, Z. Phys. B (to be pub-
lished).

[4] B. Mehlig, D. W. Heermann, and B. M. Forrest, Phys.
Rev. B 45, 679 (1992).

[5] A. Milchev, D. W. Heermann, and K. Binder, Acta. Met-
all. 36, 377 (1988).

(6] K. Kawasaki, in Phase Transitions and Critical Phenom-
ena, Vol. 2, edited by C. Domb and M. S. Green (Aca-

demic, London, 1972).

[7] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258
(1958); H. E. Cook, Acta. Metall. 18, 297 (1970).

[8] A. L. Ferreira and R. Toral (unpublished).

[9] G. G. Batrouni, G. R. Katz, A. S. Kronfled, G. P. Lepage,
B. Svetitsky, and K. G. Wilson, Phys. Rev. D 32, 2736
(1985).

[10] R. G. Petschek and H. Metiu, J. Chem. Phys. 79, 3443
(1983).

[11] B. Mehlig, D. W. Heermann, and B. M. Forrest, Mol.
Phys. (to be published).

[12] R. Toral and A. Chakrabarti Phys. Rev. B 42, 2445
(1990).

[13] A. M. Ferrenberg and R. H. Swendsen, Comput. Phys.
10/11, 101 (1989), and references therein.

[14] B. Widom, in Phase Transitions and Critical Phenom-
ena, Vol. 2 (Ref. [6]).

(15] K. K. Mon, Phys. Rev. Lett. 60, 2749 (1988).

[16] K. Binder, Phys. Rev. A 25, 1699 (1982)



