
Computer Physics Communications 74(1993)327—334 Computer Physics
North-Holland Communications

Generation of Gaussian distributed random numbers by using
a numerical inversion method
Raül Toral a and Amitabha Chakrabarti a,b
a Institut d’Estudis Avançats and Departament de FIsica, Consejo Superior de Investigaciones CientIficas, and Universitat
de les Illes Balears, 07071 Palma de Mallorca, Spain
~‘ Physics Department, Kansas State University, Manhattan, KS 66506, USA *

Received 7 November 1991; in revised form 7 September 1992

We describe a vectorizable implementation of a numerical inversion method to generate approximately Gaussian
distributed random numbers. This method is, on the CRAY-YMP computer, several times faster than the standard
Box—Muller—Wiener algorithm. The validity of the approximation is discussed.

1. Introduction are random numbers distributed according to a
Gaussian distribution of mean 0 and variance 1.

In many computer simulations one needs to Random numbers z of mean ~ and variance cr2
generate a large number of Gaussian distributed are obtained by the linear formation z = ~ + ux.
random numbers. Actually, it is not uncommon to The main advantage of the BMW algorithm is
find computer simulations of Monte Carlo meth- that it is exact producing an unbiased Gaussian
ods or numerical solutions of stochastic differen- distribution. Furthermore, it is easily imple-
tial equations in which more time is spent in the mentable on a vector Computer. A serious disad-
generation of the Gaussian distributed random vantage is that it requires the calculation of a
numbers than in the rest of the algorithm. (An sine, a cosine, a square root and a logarithm
example is given in the extensive numerical study function, resulting in a rather slow algorithm.
of a partial differential equation describing spin- One can avoid computing the sine and the cosine
odal decomposition by Gawlinski, Vinals and functions by using a rejection technique [3].This
Gunton [1].) produces an algorithm’ which is about 20 percent

The generation of Gaussian random number is faster than the pure BMW on scalar computers,
usually done by the Box—Muller—Wiener (BMW) but it has the disadvantage that it is not effi-
algorithm [2]: if ~ and ~2 are two random num- ciently vectorizable. Other algorithms have been
bers uniformly distributed in the interval [0,1], proposed [4] but they all share the unwanted
then the numbers x1 and x2 given by feature of not being efficiently vectorizable.
x1 = ~T2.log(~1)sin(2ir~2), Amongst the most efficient of all the proposed

methods, we will mention the approximate
= ~/—2 log(~1)cos(2’rr42), (1) method of adding 12 random numbers uniformly

distributed in the interval (—0.5, 0.5) (we will call
this method the G12, generator), and the ratio

Correspondence to: R. Toral, Institut d’Estudis Avançats and method of Kinderman and Monahan (see ref.
Departament de FIsica, Consejo Superior de Investigaciones [3]),which generates a random vector (u, v) uni-
Cientificas, and Universitat de les Illes Balears, 07071 Palma formly distributed in the region defined by: 0 <u
de Mallorca, Spain. E-mail: DFSRTGO@PS.UIB.ES. ________ ________

* Present and permanent address. 1, —2u~,/—ln(u) v 2u~J~(u) , the

0010-4655/93/$06.00 ~ 1993 — Elsevier Science Publishers B.V. All rights reserved

328 R. Toral, A. Chakrabarti / Generation of Gaussian distributed random numbers

Gaussian random number is then given as the M subintervals [i/M, (i + 1)/MI, i = 0, 1,.. . , M
ratio v/u. — 1, and tabulate the inverse probability distribu-

In this paper we describe a fully vectorised lion function in the points ~ = i/M, i.e. compute
implementation of the well known numerical in- and store x1 = F

1(i/M) for i = 0,..., M. One
version (NI) method [5] suitable to generate ap- then substitutes the true probability distribution
proximately Gaussian distributed random num- function F(x) by its piecewise linear approxima-
bers. The main advantage of the method is that it tion between the points [i/M, (i + 1)/M]. Then a
is very fast. The effects of the approximation are random number ~ is generated from a uniform
clearly discussed. It turns out that for many prob- distribution in [0,1]and the following linear inter-
lems the approximation is perfectly valid, result- polation formula is used to compute the random
ing in a substantial saving of computer time. number x = F1(~):

Let us start by reviewing briefly the numerical
inversion method. Let x be a random variable x = (M~— i)x~±

1+ (i + 1 — M~)x,, (3)
with a probability density function f(x) and dis-
tribution function F(x) related to f(x) by where i is such that the number ~ belongs to the

interval [i/M, (i + 1)/M), or i = [M4] (integer
F’ \ — / d 2 part of Me).

~x1 — — f~y) y. () Whether this numerical inversion method will
produce good quality random numbers will de-

The straightforward method to generate ran- pend on the quality of the approximation of the
dom variables distributed according to f(x) is the true function F(x) by its piecewise linear approx-
following. One notes that the random variable imation. This is determined by the smoothness of
= F(x) is uniformly distributed between 0 and 1 the function F(x) itself and also by the number

(we will write, for short, that ~ is a U(0,1) num- of subdivisions M of the interval [0,11.On the
ber). One then generates a U(0,1) number ~ by other hand, the NI method is usually fast, since it
any of the usual methods (which include using only involves additions and multiplications and
the machine built-in random number generator) can be easily vectorized in most of the modern
and calculates x = F 1(e), F 1(e) being the in- vector compilers. Its only overhead is the calcula-
verse function of F(x). The main problem arises tion of the numbers x1 once.
when the function F 1(e) is not expressible in The rest of the paper is organized as follows:
terms of elementary functions or when its analyti- in section 2 we describe a possible implementa-
cal form is too complicated to be efficiently im- tion of the NI method suitable for the Gaussian
plemented on a computer. In the case of the distribution; section 3 contains some program-
Gaussian distribution, the inverse function F 1(~) ming details of the algorithm; section 4 compares
is related to the inverse error function. A good the timings of the algorithm in different comput-
approximate algorithm exists for the calculation ers and discusses the validity of some of the
of the inverse error function [6]and this approach approximations involved. Finally, a computer list-
has been used in ref. [7] to compute Gaussian ing suitable for the CRAY family of computers is
distributed random numbers. However, due to given in the appendix.
the fact that the approximate algorithm also in-
cludes a logarithm and a square root functions
(see later), one gets only a slight improvement in
the necessary time to generate a Gaussian ran- 2. Implementation of the algonthm
dom number as compared to the BMW algo-
rithm. We will now present an explicit implementa-

The standard trick to avoid the calculation of tion of the table inversion method to generate
the inverse function F 1(e) every time one needs Gaussian random numbers of mean 0 and van-
a random number is to divide the interval [0,1]in ance 1. The Gaussian probability density and

R. Toral, A. Chakrabarti / Generation of Gaussian distributed random numbers 329

probability distribution functions are given re- by the piecewise linear approximation to F(x)
spectively by: computed in the points x1 = P 1(i/M). In order

to have the linear approximation as close as pos-1
f(x) = _____e~2/2, sible to the real Gaussian distribution we also

need M as large as possible. It is not efficient to
choose M too large because this would demandx

F(x) = f (y) dy = ~(1 + erf(x/v~)). (4) too much computer mepiory to store the table of
—~ the x,~s.A “reasonable” value for M that we

Here erf(x) is the error function [61. have been using is M = 214 = 16384 (although, of
The first problem appears when one notices course, larger values could be used if computer

that, due to the fact that the Gaussian distribu- memory is not a problem). With that particular
tion extends from —~ to +m, we have x

0 = value of M it turns out that x1 = F1(1/M) is
F~(0)=—~, xM—F(l)— ~ and those num- equal to x1 = —3.668. If we choose now, say,
bers cannot be used in the interpolation formula F = 10, the linear approximation between x0 =

(3). A possible solution consists in cutting-off the — F = — 10 and x1 is obviously very bad. In order
Gaussian distribution to some value F, i.e. define to allow for a smooth linear approximation we
the distribution: have chosen x0 = —F F~(1/(M+ 2)) which is

sufficiently close to x1 to let the linear function
(0, x < — F, be a reasonable approximation to the true Gauss-

f(x) = af(x), —F x F, (5) ian distribution (for M= 16384, x0 = —F=
0, x > F. — 3.842). Greater values of F can be obtained by

increasing M: F = 4.170, 4.475, 4.763, for M = 216,
The constant a, which is necessary for normal- 2i8, 220, respectively (see table 1).

ization, can be easily related to the value of the The distribution function E(x) is given by
cut-off F,

1=f~f(x)dx=aerf(F/~), (6) 10~ x F1(M+2)
= XM,

which yields P(x) = ‘I M+2 1

1 I M F(x)_~j~ —xM x xM,
(7) ~i, X XM.erf(F/v~)~

(9)
The corresponding probability distribution func-
tion is given by:

Using this choice it is easy to verify that the
10, ~ —F, values of x~are given by

E(x)—~a(F(x)—F(—F)), —F x F, I i+1
x F. x~=F~(i/M)=F~

(8) M+2)’ i=0,...,M.(10)
A word of caution is necessary concerning the

value of the cut-off parameter F. In principle, Due to the symmetry of the Gaussian distnibu-
one is tempted to take F as large as possible in tion is obvious that
order to mimic as closely as possible to tail of the
true Gaussian distribution. On the other hand, XM_i = —x1. (11)
we must not forget that we are substituting the
Gaussian probability distribution function F(x) It is clear also that if x is a random variable

330 R. Toral, A. Chakrabarti / Generation of Gaussian distributed random numbers

distributed according to f(x), then its mean value eq. (3) is equal to (JR mod(2N~’l))/2~’l.The
is zero: modulus operation can be done as the bit logical

AND operation, namely:
(x)=0. (12)

The variance of x is given by 12 JR mod(2”~”1)= IR.AND.(2N1’l — 1). (16)
Again, the bit logical AND operation is standard

o~,= <x2) = f y2f(y) dy. (13) in many compilers (the above expression is given
in the CRAY compiler format).

Integration by parts yields The linear interpolation formula (3) translates
into:

M+2~Fe_r2/2. (14) 12
2NP112

M _____

X~TXj+l+ 2N~’1 x. (17)
This is to be compared with the value 1 for the

real Gaussian distribution. When, for instance, If we now introduce the vector g, =
M = 16384, then o-~= 0.99814.... Although this (xi/2~uM), the final formula producing the
value is already very close to 1 it might be desir- random numbers i distributed according to J(x)
able to have a distribution with an exact variance is
of 1 (see the discussion in section 4). This is easily
achieved by defining a new random variable = i = I2g,.~1+ (2~”— 12)g1 (18)
x/o-M. This variable ~ is our final proposal for a The algorithm described above has been im-
“pseudo-Gaussian” random variable. Its proba- plemented for the CRAY family of computers
bility density function f(x) is explicitly given by and a computer listing can be found in the ap-

pendix. The program is organized as two subrou-
f(x) = crMf(crMx). (15) tines: INIG25O(ISEED,IX,N) and G250(IX,U,N).

A call to the subroutine G250(IX,U,N) will fill
each element of the real vector U(N) with a

3. Programming details Gaussian distributed random number. The sub-
routine 1N1G250 needs to be called once to mi-

For the explicit implementation of the method tialize the algorithm with a suitable value for therandom number generator seed ISEED. In thisdetailed above one needs to find in which interval
[i/M, (i + 1)/MI belongs the U(0,1) number ~. program we are using the R250 version of a shift
Since, in the most popular U(0,1) generators, ~ is register random number generator [8]to computethe integer random numbers required by the al-obtained by a ratio of two integer numbers IR/L0, gonithm. This generator uses the recursion for-
where JR is a series of NBIT random bits and mula:
L0 = 2NBIT it turns out that the interval index i
can be found simply by the integer operation ix, = IXjp.XOR.IXIq, (19)
= [(M/L0)IR]. If we choose now M to be also a

power of 2, M = 2NP, then one needs to compute with p = 250, q = 103. IX is an integer vector (of
i = [IR/2NBIT~’] [IR/2t~hI’l]. Instead of this which only the last 32 bits are used) of dimension
division one could simply shift right NP1 times N+p. This has to be initialized with p initial
the bit representation of the integer number JR. values for the vector IX. This is achieved by using
Although it is not Fortran 77 standard, the shift the machine built-in random number generator
operation is implemented in many compilers (in (called RANF() on the CRAY) which is, in turn,
the Cray compiler it is called SHIFTR(IR, NP1)) initialized by the call to RANSET(ISEED).
and it is usually faster to perform than an integer The calculation of the numbers x, = F ‘((i +
division. The difference (M~— i) that appears in 1)/(M + 2)) is done by the use of the following

R. Tora1~A. Chakrabarti / Generation of Gaussian distributed random numbers 331

approximation formula to the inverse function Table 1
x = F 1(e) [6]: Parameters of the random number generator as a function of

the table size M =
2NP

c0+C1t+C2t
2 NP F (X4) (X6) KSdistance

= — 1 + d
1t + d2t

2 + d
3t

3 + ~ (20) 6 2.166551 2.453355 9.327704 1.5134E-02

7 2.423623 2.586529 9.958819 7.6832E-03
where 8 2.663078 2.699921 10.859581 3.8714E03

9 2.887209 2.790338 11.793347 1.9433E-03
t = ~,/—2 log(1 — ~). (21) 10 3.098136 2.858432 12.631319 9.7370E-04

11 3.297699 2.907257 13.318054 4.8740E-04
12 3.487411 2.940824 13.844924 2.4386E-04

c
0, c1, c2, d1, d2, d3 are parameters. This approx- 13 3.668452 2.963087 14.228882 2.0087E-04

imation has an error less than 4.5 x iO~ for 14 3.842003 2.977428 14.497684 1.8332E-04
the range 0.5 ~ 1.0. The values for 0 ~ 0.5 15 4.008797 2.986429 14.679537 1.7497E-04
are found by using the symmetry relation equa- 16 4.169549 2.991958 14.799202 1.7089EM4
tion (11). 17 4.324857 2.995294 14.876134 1.6888E-04

18 4.475228 2.997277 14.924628 1.6787E-04
19 4.621095 2.998439 14.954684 1.6735E-04
20 4.762833 2.999113 14.973043 1.6710E-04

4. Performance and discussion

The program given in the appendix has been obtained using machine code programming. How-
timed on the CRAY-YMP of the Pittsburgh Su- ever, it is clear that the NI method can be pro-
percomputer Center and NCSA, Urbana—Cham- grammed more efficiently than the other algo-
paign (CFT77 compiler version 5.0). The time rithms, since the only computations required are
taken is 3.6 x 10—8 s per random number (that logical operations, additions and multiplications,
includes the overhead when calling the subrou- whereas the other exact methods use more com-
tine G250 for vector length N = 106). This is to plicated functions.
be compared with 2.3 x i0~s required by the It is not only necessary that the program is
BMW algorithm, 3.2 x 106 s by the ratio method fast, but it also has to deliver good quality ran-
and 2.1 x iO~s by the G12 generator, i.e. the NI dom numbers. To show the effect of the tail
method is several times faster. On a VAX 9000 cutoff we have computed analytically the values
(with a vector processor), the NI method takes of the 4th and 6th moments of the distribution
3.5 x iO~ s as compared with 1.3 X 106 s for given by eq. (15) as a function of the cutoff value
the BMW algorithm, 3.6 x 10—6 s for the ratio F (remember that the second-order moment is
method and 1.9 x 10—6 s for the G12 generator. exactly 1 by construction). These values are shown
Given that the ratio method is not the best for in table 1. We can see from this table that for a
vector computers since it does not fully vertorise, table size of, e.g., M = 214 there is a relative error
we have also timed the different algorithms on a of 7.524 X iO~and 3.35 x 102 in the fourth-
VAX 6000 which is a scalar computer, with the and sixth-order moments, respectively. Another
results: 6.4 x i0~s for the NI method, 4.1 < 10—6 measure of the inaccuracy of the generator is
s for the BMW, 3.6 x 10_6 s for the ratio method given by the Kolmogorov—Smirnov (KS) distance,
and 2.8 x 10_6 s for the G12 generator. In all the which is defined as the maximum deviation be-
cases we have used the R250 routine for the tween the true Gaussian distribution function,
generation of U(0,1) numbers. We conclude that, F(x), and the piecewise linear approximation
both for vector and scalar computers, the NI E(x) used in the numerical inversion method:
method is several times faster than the other
methods tested here. The previous timings have DKSmmax..~<X<+IF(x)—E(x)I. (22)
been obtained using Fortran routines and it is We have included in table 1, the values of the KS
conceivable that further improvement could be distance, as a function of the size of the table

332 R. Toral, A. Chakrabarti / Generation of Gaussian distributed random numbers

0.4 —

i~-1

~ 0.2-0.3 - I 10-2

io-
3

0.1 —

io~’
__ —~ I I I0.0

-4 -2 0 2 4 4 -2 0 2 4
x x

Fig. 1. Histogram of the distribution of Gaussian numbers Fig. 2. Logarithmic plot of fig. 1 to outline the very small
created after generating 108 numbers according to the numer- discrepancies in the tail of the distribution.
ical inversion method explained in the text. The exact Gauss-
ian distribution (solid line) is also plotted. The histogram
width is z~x= 0.08. Note that at the scale of this figure, there Whether the NI method as implemented here
is no difference between the exact Gaussian distribution and would be suitable to a particular problem willthe numerical one.

depend on how much the tail of the Gaussian
distribution can affect the results. Consider, for

used in the NI method. For table size Al = 214 example, the problem of solving numerically astochastic differential equation with a Gaussian
for example, we obtain DKS = 1.833 x iO~. random noise source [9]. The numerical algo-

In order to test the algorithm and to see the rithms use Gaussian random numbers of mean
effect of the piecewise linear approximation, we zero and variance 1. It has been suggested that,
have generated 108 Gaussian random numbers by in order to speed up the algorithm, some of these
using the NI method. The lower order moments Gaussian random numbers can be replaced by
obtained were Kx) = — 1.228 x 106, <X2) = non-Gaussian random numbers with the same
0.9999923, <x3) = 6.20 x iO~, (x4) = 2.979, first lower moments, without modifying the order
~x5) = 6.53 X iO~,(x6) = 14.56 in good agree- of convergence of the algorithm [10]. In particu-
ment with the analytical results of table 1. In fig. lar, the random variable defined by the probabil-
1 we show a plot of the probability density func- ity density function,
lion obtained numerically after generating 108
random numbers by the NI method compared f(x) ~6(x + ~/~)+ ~6(x) + ~6(x —
with the exact Gaussian distribution. The main (23)
objective of this figure is to show that the discrep-
ancies are too small to be seen in this sale. Figure (6(x) is the Dirac delta function) has the five
2 is a logarithmic plot of fig. 1 to show the small lower moments, (x), (x2~, (x3)’, (x4), (x5)
discrepancies in the tail of the distribution. These equal to those of the Gaussian distribution. How-
results show that linear approximation is suffi- ever, the fact that this distribution is clearly very
cient for the table sizes used here. Of course, one different from a Gaussian distribution could in-
could reduce the value of the table size required troduce some unwanted bias in the errors. We
by using higher-order interpolation. However, we believe that it is better to maintain the shape of
believe that since a table size of 16384 real the distribution function as close to that of a
elements cannot cause any memory problems in Gaussian as possible and, what is more impor-
modern computers, there is no real need to use tant, it does not take longer with the NI method
the more complex algorithms that involve to generate a pseudo-Gaussian random number
higher-order interpolation, than it would take to generate a random number

K Toral, A. Chakrabarti / Generation of Gaussian distributed random nu,nbers 333

with the distribution of eq. (23). In other prob- parameter (nbit32)

lems, however, (like in the case of mean first parameter (npinbit—np)
dimension ix(n+ip)passage time problems (see e.g. [11]))the tails of dimension g(0’:”m)the distribution can be important and the NI common/c2501g

method may not be suitable since it cuts-off the common/d250/nn, nnl
tail. The cut-off value F could be, of course, data c 0,cl , c2 /

increased by increasing the value of the parame- 2.515517,O.802853,O.010328/
data di,d2,d3/ter M. We would like to stress that even the
1.432788,0.189269,0.001308/

Box—Muller—Wiener algorithm, when imple- max i n t =2 * * n b i t -1
mented on a computer, gives a cutoff distribution Ca IL ran set (i seed)
because the maximum number one can obtain in do 200 i = 1, i p
a, say, 32 bits machine is ~ 2iog(2_31) = 6.55. ix(i)ranfO*maxint200 continue
On the other hand, one may also ask whether it is nni =2 * * npi
physically meaningful that the results of a partic- n n ni-i
ularproblemdependsoheavilyonthetailsofthe pi4.OdO*datan(1.OdO)
Gaussian distribution, or whether the physical do 1 i = m /2, mprea IC i +1) / (m+2)process is still well described by a Gaussian distri- t=sq rt (—2.0 * Log Ci . —p)

bution even for events lying 3.842 times the stan- xt—(cO+t*(ci+c2*t))I(1.0+t
darddeviationofthemean. *(di+t*(d2+t*d3)))

g Ci) x
g(m—i)—x

1 cOntinue

Appendix. Program listing write(6, *) Cut—off value ~, g(m)
u2th=i.0—real(m+2)/m*sqrt(2.0/

pi)*g(m)*exp(—g(m)*g(m)/2)
C G250 u2th=nni*sqrt(u2th)
C Gaussian random number generator do 856 i=0, m
C 856 g(i)g(i)/u2th
C Fills vector IJ(N) with cutoff Gaussian return

distributed end
C random numbers by using a numerical in- subroutine g250(ix, u,n)

version method, parameter (np14)
C The cutoff value depends on the parame- parameter (m2**np)

ter NP. parameter Cip250, iq~250—i03)
C parameter (nbit32)

C To use first initialize it by calling parameter (npi=nbit—np)
CALL 1N1G250 (ISEED,IX,N) dimension ix(n+ip)

C dimension u(n)
C where in the main program one needs to dimension g(0:m)

put common/c250/g
C common/d250/nn,nnl
C DIMENSION IX(N+250) do 150 k1,n
C DIMENSION U(N) irix(k+iq>.xor.ix(k)

C ishiftr(ir,npi)
C Then subsequent calls: i2=ir.and.nn
C CALL G250C1X,U,N) u(k)=i2*g(i+i)+(nni—i2)*g(i)
C ix(k+ip)ir
C will fill up U with cutoff Gaussian 150 continue

random numbers, do 250 i=1, ip

subroutine inig25o(iseed,ix,n) jx(i)ix(i+n)
parameter (np14) 250 continue
parameter (m2**np) return
parameter (ip=250, iq250—103) end

334 R. Toral, A. Chakrabarti / Generation of Gaussian distributed random numbers

Acknowledgements [2] G.E.P. Box and M.E. Muller, Ann. Math. Statist. 29
(1958) 610.

We acknowledge financial support from the [3] D.E. Knuth, The Art of Computer Programming, vol. 2,
Direccidn General de Investigación CientIfica y Seminumerical Algorithms (Addison—Wesley, Reading,MA, 1981).Técnica, contrast number PB 89-424, and by the W.H. Press, B.P. Flannery, S.A. Teulolsky and W. Vet-
Universitat de les Illes Balears (UIB). This work terling, Numerical Recipes, Cambridge Univ. Press,
was also partially supported by NSF grant no. Cambridge, 1986).
DMR-9100245 and grants of computer time at [4]J.H. Ahrens and U. Dieter, Commun. ACM 15 (1972)

the Pittsburgh Supercomputing Center of Super- 873.
[5]M.H. Kalos and P.A. Whitlock, Monte Carlo Methodscomputing Applications, Urbana—Champaign. (Wiley, New York, 1986).

Acknowledgement is also made to the Donors of [6]M. Abramowitz and l.A. Stegun, Handbook of Mathe-

the Petroleum Research Fund, administered by matical Functions (Dover, New York, 1972).
the American Chemical Society, for partial sup- [7] O.T. Valls and G.F. Mazenko, Phys. Rev. B 34 (1986)
port for this research. A.C. also thanks the Uni- 7941.

[8]S. Kirpatrick and E.P. Stoll, J. Comput. Phys. 40 (1981)versitat de les Illes Balears (UIB) for their hospi- 517.
tality while part of this work was carried out. [9]T.C. Gard, Introduction to Stochastic Differential Equa-

tions, Monographs and Textbooks in Pure and Applied
Mathematics, Vol. 114 (Marcel Dekker, New York, 1988).

References [10] A. Greiner, W. Strittmatter and J. Honerkamp, J. Stat.
Phys. 51(1988) 95.

[1] E.T. Gawlinski, J. Vinals and J.D. Gunton, Phys. Rev. B [11] C.W. Gardiner, Handbook of Stochastic Methods
39 (1989) 7266. (Springer, Berlin, 1985).

