PHYSICAL REVIEW A

VOLUME 46, NUMBER 8

15 OCTOBER 1992

Structure of polymer chains end-grafted on an interacting surface

Amitabha Chakrabarti and Peter Nelson
Department of Physics, Kansas State University, Manhattan, Kansas 66506

Raul Toral
Departament de Fisica, Universitat de les Illes Balears, 07071 Palma de Mallorca, Spain
(Received 9 March 1992)

We use Monte Carlo simulation methods to study the structure of many polymer chains end-grafted
on a flat interacting surface. We consider both attractive and repulsive interactions between the grafting
surface and the monomers. We also study the effect of short-range and long-range surface interactions.
In all cases, the density profiles of the grafted polymer layer obtained from Monte Carlo studies are in
good agreement with various recent self-consistent-field calculations. For repulsive potential wells we
find the presence of a definite exclusion zone from which the free ends of the chains are repelled. This
result is in excellent agreement with the theoretical prediction.

PACS number(s): 36.20.—r, 82.70.—y, 87.15.—v, 81.60.Jw

I. INTRODUCTION

The configurational properties of polymers terminally
attached (end-grafted) to an interface are important to
many aspects of polymer science and technology [1]. In
particular, stabilization of colloidal suspensions can be
achieved by end-grafting polymer chains to colloidal par-
ticles [2]. These polymer chains provide the long-range
repulsion necessary to offset inherent short-range attrac-
tive forces (van der Waals attraction) that exist between
colloidal particles. In cases where there is high surface
coverage (o) and no surface adsorption, the polymers
stretch out normal to the surface forming a polymer
“brush.” In general, the overall structure of the brushes
(e.g., the height and the density profile) depends on the
solvent quality, since the equilibrium structure is the re-
sult of a free-energy balance between conformational en-
tropy and excluded-volume-interaction energy.

Theoretical treatments of the grafted polymer brush
have employed phenomenological scaling arguments [3,4]
and self-consistent-field (SCF) methods [5-8]. The scal-
ing arguments of Alexander [3] and de Gennes [4] pro-
vide no detailed information of the polymer chain confor-
mations. They do, however, provide scaling relations be-
tween the height of the brush, the surface coverage, and
the chain length (N). Various studies based on the SCF
method have indicated a substantially different monomer
density profile from the step-function form assumed by
Alexander and de Gennes. Usually, the monomer density
profile needs to be evaluated numerically [9-11] in these
SCF calculations. Recently, however, a simplified SCF
method has been developed by Milner, Witten, and Cates
(MWC) [8] based on the assumption of long, strongly
stretched chains and weak excluded-volume interactions.
Such calculations are argued to be exact in the long-chain
limit. MWC found a parabolic form for the density
profile. This parabolic density profile is supported by re-
cent Monte Carlo [12,13] and molecular-dynamics [14]
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simulations for the case of nonadsorbing grafting sur-
faces. These simulations found general agreement with
the parabolic form except for a depletion of monomer
concentration very near the grafting surface. It is also
found that the free ends of the chains are not excluded
from the region near the grafting surface, in agreement
with the results of the SCF model. The agreement be-
tween numerical studies and the SCF theory is also quite
good for more complicated situations such as po-
lydisperse chains [12,15] grafted on a flat surface and
chains grafted on a curved surface [16,17].

Recently, the SCF method for chains grafted on a
noninteracting flat surface [8] has been generalized by
Marques and Johner and by Marko [18] for the case of an
interacting grafting surface. These calculations are car-
ried out for both attractive and repulsive interactions be-
tween the grafting surface and the polymer chains. For
attractive interactions it has been found that the layer
thickness depends in a simple way on the total integrated
strength of the interaction potential, with no dependence
on the particular shape of the potential well. For repul-
sive interactions, the SCF calculations find exclusion
zones (similar to the case of a convex grafting surface [16]
with no surface interactions) from which the free chain
ends are excluded. None of these predictions has previ-
ously been tested in either experiments or in numerical
simulations.

In this paper, we carry out a detailed Monte Carlo
study of polymer chains grafted on an interacting surface.
We calculate the density profile and the density of the
free chain ends for various types of surface interactions,
both attractive and repulsive. The general agreement be-
tween our numerical results and those obtained from SCF
calculations is very good. In Sec. II, we describe the nu-
merical model and the methods of calculations. In Sec.
III A, we present the results for attractive potentials,
both short ranged and long ranged, and compare them
with SCF calculations. In Sec. III B, we present the cor-
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responding results for repulsive surface interactions and
in Sec. IV, we conclude with a brief summary and discus-
sion of the results.

II. MODEL AND NUMERICAL PROCEDURE

In order to simulate the behavior of many polymer
chains terminally anchored to an interacting surface, we
have carried out extensive Monte Carlo calculations. We
choose a simple cubic lattice with a grafting surface of
size L, XL, located at z=0. We consider L, =L, =40
and use periodic boundary conditions in the x and y
directions. Our results are for chains with N +1 mono-
mers with N =49 and 99. The surface coverage o is
equal to 0.04 in all cases. The number of polymer chains
(N,) present in the system is then given by
N,=oL,L,=64. All the monomers in the simulations
are subject to excluded-volume interactions, such that a
particular lattice site cannot be occupied by more than
one chain at a time. We have chosen random initial con-
ditions for the simulation, i.e., for a particular run, one
end of each of the N chains is kept fixed at a randomly
chosen vacant site on the grafting surface. We define our
unit of time, one Monte Carlo step per monomer (MCM),
as N, “N-bead cycles,” i.e., N,N elementary bead-jump
attempts. The particulars of an elementary bead-jump at-
tempt depend on the local environment of the randomly
chosen monomer and could be one of the following: an
end bead jump, a normal internal bead jump or a crank-
shaft motion. Once all the required chains are grafted,
the equilibration process starts. We consider several
different interactions between the grafting surface and the
monomers in this study. We consider both short-ranged
(contact-type) and long-ranged (square-well-type) attrac-
tive interactions. For repulsive interactions, we consider
only the square-well case. In each of these cases, we use
an importance sampling method based on the standard
Metropolis algorithm: the Bg}vj_v/ foTnﬁguration is accepted
with probability min(1,e 27), where AE is the
change in energy produced by the trial update. The start-
ing configurations are equilibrated over 125000 MCM’s,
i.e., for about 0.8 billion monomer updates for N =99.
After the equilibration is done, several different quantities
such as the monomer density and the free-chain-end den-
sity as a function of distances from the grafting plane are
computed over ten sets of trials with 125000 MCM in
each trial. The density profiles for these ten sets are then
compared to study if proper equilibration has been
reached. For all the cases considered here, we found that
the sampling has been carried out in equilibrium situa-
tions as evident from the absence of any systematic
differences in those ten sets of data. The data were then
averaged over these 10 sets to improve the accuracy.

III. RESULTS

A. Attractive surface interactions

We first consider short-range attractive interactions
(contact type) between the grafting surface and the mono-
mers. We define X, (in units of k5 T) as the difference in
the energy of adsorption between a monomer and a sol-
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FIG. 1. Density profile from Monte Carlo simulations for
contact-type attractive interactions between the grafting plane
and the monomers. Here N =49 and 0=0.04. The results
from numerical SCF calculations for adsorbing surface (Ref. [9])
and from Monte Carlo calculations for nonadsorbing surface
(Ref. [12]) are also included for comparison.

vent molecule. The solvent molecules are considered to
be occupying the empty sites of the lattice. The mono-
mers then gain an energy of y, only if they lie on the gra-
fting plane located at z =0. We consider N =49 and 99,
0=0.04, and x,=0.5 in this study. In Fig. 1 we show
the density profile for N =49 and in Fig. 2 we show the
corresponding density profile for N =99. In these figures
we also show the density profile for the nonadsorbing
case [12] for comparison. We compare our numerical re-
sults with numerical-SCF calculations based on the work
of Hirz [9]. Hirz’s calculation is an extension of the
Scheutjens-Fleer [6] lattice model for terminally attached
chains with attractive surface interactions. In both Figs.
1 and 2 we find that the agreement between Monte Carlo
simulations and numerical SCF results are excellent for
all values of z, except for z =0, where the SCF method
seems to underestimate the monomer density.

We also compare our results with analytical SCF cal-
culations [18]. In the SCF formulation of MWC (8], the
brush height for noninteracting grafting surface is given
by

ho=(1200y/7a)*V , (1)

where @, is the excluded-volume-interaction strength in
this model, a is the “packing length,” and V is the
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FIG. 2. Same as in Fig. 1 except that N =99 here.
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volume of each polymer chain. The ideal chain end-to-
end distance in this model is given by

Rywe=03V/a)'"? . 2)

For lattice polymers considered in our simulation the
end-to-end distance for ideal chains is given by

letice:(]Vbz)l/2 > (3)

where b is the lattice constant. Also, for lattice polymers
one should consider ¥ =Nb?, so that the packing length
in the MWC model is given by

a=3b, (4)

in terms of the lattice constant b. From now on, we will
set b =1 so that all lengths are measured in units of the
lattice constant. Then a =3 and for lattice polymers the
brush height for a noninteracting grafting surface be-
comes

ho=(1200/7*)'*N , (5)

where w=w,/3 is the equivalent lattice excluded-volume
parameter.

In the SCF theory extended to the case of an interact-
ing grafting surface [18], a relevant parameter is

A

oVa, '’

s

fi= (6)
where A; is the magnitude of the integral of the surface
potential and thus a measure of the total surface interac-
tion. In terms of this parameter f; the brush height in
the presence of surface interactions is given by

h=hy(1—f )73 @)

and it is not expected to depend on the detailed shape of
the attractive surface potential. For the contact attrac-
tive interaction considered in our lattice model, one finds

s ) (8)

with w=0.47 as computed in Ref. [12] for N =99 and
0=0.04. For x,=0.5, f,=0.0895 and thus the predict-
ed value of h is approximately 27 lattice constants from
Eq. (7), when we consider h, =28 for this case as found in
Ref. [12]. Note that we have computed 4, in Ref. [12] by
fitting the profile to a parabola and computing the dis-
tance where this fitted profile vanishes. In the presence
of surface interactions we fit the latter part of the profile
to a parabola and estimate & to be the height where this
fitted function vanishes. The above estimate of h
(h =26.7) agrees reasonably well with the theoretical
prediction (A =27.0).

In the SCF theory [18], the monomer distribution is
found to be parabolic for distances outside the range of
the surface interactions. We find agreement with this
prediction for distances larger than several lattice sites
from the grafting plane. Actually, for large distances, the
density profile for the adsorbing case approaches that for
the nonadsorbing case both for N =49 and 99 as seen in
Figs. 1 and 2. This is expected from the theory since for
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FIG. 3. Chain-end-density profile from Monte Carlo simula-
tions for contact-type attractive interactions between the graft-
ing plane and the monomers. Here N =99 and 0 =0.04. The
results from Monte Carlo calculations for nonadsorbing surface
(Ref. [12]) are also included for comparison.

moderate values of y, and large N, h approaches h [Eqgs.
(7) and (8)]. In experimental situations, then, one expects
that for a very short-range attractive surface potential,
the density profile will be indistinguishable from the
nonadsorbing case for distances away from the grafting
surface.

In Fig. 3 we plot the density of the free chain ends for
both the adsorbing case and the nonadsorbing case for
N =99. The theoretical predictions are that the chain-
end density will show a peak at the grafting surface for
the adsorbing case, but for large distances away from the
grafting surface the chain-end-density profile will be simi-
lar to the nonadsorbing case. We find that the density of
the free chain ends are larger at the grafting surface for
the adsorbing case in agreement with the SCF theory
[18]. We also note that the predicted peak at z=0 is
clearly visible in the simulation. Also, for distances far
away from the grafting surface, the chain-end-density
profiles for the adsorbing and the nonadsorbing case are
qualitatively similar to each other.

Next, we consider the case with longer-range attractive
surface interactions. We do not know the existence of
any numerical SCF calculations for this case. However,
Marques and Johner and Marko [18] have considered this
situation in their analytical SCF calculations. In particu-
lar, they have considered an attractive square-well poten-
tial. In order to compare Monte Carlo results with
analytical theory, we have considered an attractive
square-well surface potential with depth ¥V (in units of
kpT) and range z,. We show the density profile for two
such situations in Fig. 4 for N =99 and o =0.04 along
with the theoretical profiles calculated by Marko. In
each of these cases zy=4 and V;=0.1 and 0.5, respec-
tively. In Fig. 4 the density is rescaled by ¢, the mono-
mer density at z =0 for the noninteracting case, and the
distance by h, the height of the brush in the noninteract-
ing case. The values of ¢, and h, are taken from the
Monte Carlo simulations of Ref. [12]. As seen in Fig. 4,
the general form of the density profiles agree quite well
with the theoretical predictions. We should note here
that, in this rescaled form, the comparison with theory
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FIG. 4. Density profile for long-range square-well attractive
potential for various well depths V,. Here N =99, 0=0.04,
and the range of the potential z, =4 lattice spacings. The lines
are predictions of the SCF theory [18].

does not involve any free parameter. We note that the
agreement with theory is better for V;,=0.1 than for
V,=0.5. For the latter case of strong attraction, many
monomers fill up the attractive well and the grafted brush
ceases to be strongly stretched in the case of the finite
chain lengths considered here. This is evident from the
relatively small value (approximate 2.3 in this case in
contrast to 3.5 for the noninteracting brush) of the ratio
of the brush height to the unperturbed chain radius of
gyration in this case.

Let us now compare some specific features of the densi-
ty profile of the grafted layer found in this simulation
with the theoretical predictions. The theoretical predic-
tion is that for a grafted layer with a long-range attrac-
tive surface interaction, the height of the brush is also
given by Eq. (7) independent of the shape of the attractive
potential. For the square-well potentials considered here,

Vozo
fe= 30Nw

and as mentioned before we have [12] h,=28.0 for the
above values of N and o. Then, the theoretical value for
h [Eq. (7)] is 27.0 and 24.0 for ¥;,=0.1 and 0.5, respec-
tively. This implies that the theoretical density profile
should vanish for values of the rescaled height
h /hy=0.96 and 0.86, respectively. The theoretical value
of h/hy, agrees well with our numerical estimate for
V,=0.1, obtained by fitting the latter part of the profile
in Fig. 4 to a parabola. For V;=0.5 the numerical result
for h /h is smaller than the predicted value but, as men-
tioned earlier, in this case the brush is not strongly
stretched and a comparison with the SCF theory may not
be appropriate.

The profile is expected to show a maximum near z,
whose strength increases as ¥V, increases. The SCF
theory [18] predicts that the monomer density at z =0 for
the attractive case is given by

f,oN

d(z=0)=¢,+ s (10)
29

9)

where ¢, is the monomer density at z =0 for the nonad-
sorbing case. Note that the SCF theory predicts a para-
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bolic profile for the nonadsorbed case and the simulation
results [12] show that there is a small depletion zone near
the grafting surface. In order to compare with SCF cal-
culations in the presence of surface interactions, we take
the value of ¢, from the parabolic fit to the profile in Ref.
[12] rather than its “raw” value at z=0. Thus we find
¢0=~0.21. For V;=0.1 and 0.5 the predicted value of
¢(z =0) are approximately 0.28 and 0.54, respectively
and hence ¢/d,=1.3 and 2.6 in these cases. Again, these
values compare well with the numerical results shown in
Fig. 4.

B. Repulsive surface interactions

In this section we consider repulsive interactions be-
tween the grafting surface and the monomers. In order
to compare with theoretical calculations, we again con-
sider a repulsive square well of height ¥, and range z,.
We consider z,=4 and 9 lattice spacings and V;,=0.5
and 1.0 in these studies. In Fig. 5 we plot the density
profile for various values of z; and V|, along with theoret-
ical profiles [18]. Again in this rescaled form, the com-
parison does not involve any free parameters. We find
that the density profile shows an abrupt drop near z, for
all values of V|, in agreement with the theoretical predic-
tions. We also note that z, plays an important role to
govern the structure of the brush. For example, for
z,,=4, the density profile at large distances are very simi-
lar both for ¥;=0.5 and 1.0. On the other hand, the
profile extends further out in z for z,=9 and V,=1.0. It
seems, then, that the height of the brush is controlled
more by the range of the repulsive well than by the
strength of it. The value of the density near the grafting
surface, however, seems to be controlled by ¥V, at least
for the relatively strong values of ¥, considered in this
study.

In Fig. 6 we plot the chain-end density for the several
repulsive well considered above, along with the nonin-
teracting surface case. We find that the overall structure
of the chain-end density is governed more by the range of
the repulsive well rather than its strength. Moreover, in
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FIG. 5. Density profile for long-range square-well repulsive
potential for various well depths ¥, and range z,. Here N =99
and 0=0.04. The results from Monte Carlo calculations for
nonadsorbing surface (Ref. [12]) are also included for compar-
ison. The lines are predictions of the SCF theory [18].
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FIG. 6. Chain-end-density profile for long-range square-well
repulsive potential for various well depths ¥V, and range z,.
Here N =99 and 0 =0.04. The results from Monte Carlo calcu-
lations for nonadsorbing surface (Ref. [12]) are also included for
comparison. The lines are predictions of the SCF theory [18].
Note the existence of an excluded zone for z <z, for the repul-
sive potentials.

excellent agreement with the SCF theory [18], we find the
existence of an excluded zone ranging up to z, for all
values of ¥V, considered here. This simulation definitely
observes an exclusion zone in grafted polymer layers. In
this case the exclusion zone arises due to the repulsive
surface interactions. The prediction of an exclusion zone
in the context of a noninteracting convex grafting surface
[16] is still unconfirmed in experiment or simulation.

IV. CONCLUSIONS

In this paper we have used Monte Carlo simulation
methods to study the structure of many polymer chains
grafted on a flat interacting surface. We consider both
attractive and repulsive interactions between the grafting
surface and the monomers. We compare the results from

AMITABHA CHAKRABARTI, PETER NELSON, AND RAUL TORAL 46

the Monte Carlo study with recent self-consistent-field
calculations. For short-range attractive potentials, nu-
merical SCF calculations has already been carried out.
We find excellent agreement between the Monte Carlo re-
sults and numerical SCF calculations. We also find that
the density profile for this adsorbing case is very similar
to that for the nonadsorbing case for distances far away
from the grafting surface. This has been predicted in an
extension of an analytical calculation based on SCF
methods [18].

For longer-range surface interactions we consider
square-well type potentials for both attractive and repul-
sive cases and compare our results with the theoretical
predictions. The agreement between the Monte Carlo re-
sults and the SCF theory is excellent. For both attractive
and repulsive potentials the predicted shape of the profile
agrees quantitatively with numerical simulations. For
repulsive potential well we also find the presence an ex-
cluded zone inside the potential well from which the free
ends of the chains are repelled. This is predicted by the
SCF theory as well.

We find, then, that for polymer chains grafted on in-
teracting surfaces the SCF theory works quite well. For
nonadsorbing cases the theory has already been com-
pared with numerical simulations with excellent agree-
ment. We hope that our simulation would attract more
experimental work [19,20] in this direction.
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