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Abstract. We describe, compare and analyse a series of microcalorimetric experiments and 
computer simulations focusing on the temporal behaviour of the excess energy in super- 
saturated solid solutions, e.g. quenched AI-Zn alloys with different compositions. Both 
systems. real samples and computer models, show a qualitatively very similar behaviour. 
The main common features are the scaling of the data corresponding to different composi- 
tions. temperatures and even systems, and its consistency with a combination of simple 
power laws. These factsconfirmandextendsomepreviousconclusions aboutthe microscopic 
mechanisms present during the temporal evolution of the system. We also estimate equilib- 
rium energy values in the case of the binary alloy or king model. 

1. Introduction 

The decomposition kinetics of a supersaturated solid solution is a problem of practical 
as well as theoretical interest. Accordingly it has recently been the subject of many 
experiments. namely electron or field ion microscopy, electrical resistivity measure- 
ments and, most frequently. small-angle scattering of x-rays, light or neutrons (see. for 
example, Goldburg 1982). The simplest situation of this kind occurs when a segregating 
binary alloy such as Al-Zn is quenched from the melt into the miscibility gap, a process 
that can also be simulated on a computer (Binder et a1 1979, for instance). A recent 
series of such computer simulations has described the behaviour of the structure function 
(Lebowitz et a1 1982, Fratzl er a1 1983, Marro and VallCs 1983) and the equilibrium shape 
and evolution of the cluster distribution (Marrow and Toral 1983, Penrose et a1 1984); 
they have also revealed a striking and useful similarity between the temporal behaviour 
of some real materials and that of simple Ising-like models (Lebowitz et a1 1983). 

This paper describes a new effort, from a novel point of view, to understand the 
mechanisms present during the relaxation of a supersaturated solution. It describes and 
analyses, probably for the first time, a series of microcalorimetric measurements of the 
excess energy during the temporal evolution of quenched aluminium alloys. By making 
a comparison with the behaviour of a simple model system and with some theory we are 
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able to draw conclusions about the physical mechanisms that seem to dominate during 
the process. Our  results seem more conclusive (although perhaps not so useful) than 
those obtained when one  analyses directly the cluster distribution; this is due in part to 
the existence of a simple scaling of the data with temperature. composition and even the 
system investigated. 

2. The model system 

The model, which has been described extensively elsewhere (Marro er a/  1975. Binder 
et a1 1979, Lebowitz et a1 1983). is a simple cubic lattice with N = L3 ( L  = 30 or  50) lattice 
sites, each occupied by either an A or  a B particle. and periodic boundary conditions. 
The  number of A particles is given by p N .  Starting at  a very high temperature (random 
distribution of the A particles), the system evolves by Kawasaki dynamics. a Markov 
process whose basic step is to interchange an  A particle with a neighbouring B particle 
with a probability, chosen to satisfy detailed balancing. 

P(  T ,  6 U )  = 70' e-@"/(l + e-@'). (1) 

Here /3 = l/kBT and 6U is the increase of energy brought about by the proposed inter- 
change. The  (configurational) energy is defined 

U =  - K E s , s ,  \ \  K > O  ( 2 )  

where the sum is over nearest-neighbour pairs and s, = 1 ( -  1) according to whether 
there is an  A (B) particle at site i. so. the average time between two attempts to 
interchange two neighbouring particles. sets the timescale for the evolution; it is taken 
to be 70 = 1 here.  

The phase diagram of the corresponding infinite system is accurately known from 
series expansions. The  critical temperature T,  is very close to 3K/0.88686 kB.  We shall 
refer in the following to the system evolution at different values of the density p and 
temperature T.  these are defined in table 1 and in figure 1. 

3. Equilibrium energy 

The energy of the system can also be written as U = -K(NAA + NBB - . V 4 ~ )  where 
NAA, NBB and N A ~  represent, respectively, the number of nearest-neighbour pairs AA, 
BB and AB in the system; NAA + NBB + N A B  = 3N. It then follows that 

U = K N  ( 2 ~  - 3) (3) 
so that U = N A ~ / N ,  the number of AB bonds per lattice site. is a natural measure of the 
system energy. 

The  computer simulations provided us with values of the energy at selected values 
of the time, U , .  as it evolves towards its asymptotic or equilibrium value u , ( T ) .  For 
comparisons with microcalorimetric measurements on real materials, however, one  is 
rather more interested in the evolution of the excess energy U ,  - U ,  at temperature T. 
However. we d o  not have a definite way of estimating theoretically U, ( T )  at T < T, 
inside the coexistence line. O n  the other hand, the simulations rarely reach the final 
equilibrium state in this case and the data are not smooth enough to allow a sensible 
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evaluation of time derivatives. One may instead assume (Marro et a1 1975) that the 
energy of the system with two coexisting phases will be given approximately as a sum of 
two terms: 

u , ( T )  = up(T) + a ( T )  u' (0)  (4)  

where up( T )  is the equilibrium energy in the pure phase (Baker 1963, Binder 1972). The 
last term in (4) is intended to represent u ' ( T ) ,  the contribution of the system interfacial 
energy at T < T,; a( T )  is the surface tension and u'(0) is the contact surface at zero 
temperature. 

From geometrical arguments it readily follows that 

O s p s &  

u'(0) L = 4p'? 729 d p d f ( 5 )  6 4  - jp" S G p S ;  

in order that the minority phase adopts the minimum contact energy in a system with 
periodic boundary conditions. Computing a ( T )  from the Monte Carlo data of Leamy 
eta1 (1973), we finally obtain the values for U ,  shown in table 1. In the cases where we 
were able to obtain estimates of U ,  ( T )  from the computer evolution of the model system, 
these are also shown in table 1 for comparison. One may conclude from the values in 

Table 1. Definition of the phase points P, .  i = 1. . . , . 16. considered in the text and in figure 
1. The last column lists the values for the equilibrium energy u,(T, p )  for the model system 
as estimated from (4). The values for ur obtained from the computer simulation at P I .  Pr 
and P , ,  (coexistence line) are also shown. These are in perfect agreement with the theoretical 
predictions. When the model system was quenched to the other phase points. it never 
reached the equilibrium state: nevertheless. the table also includes for comparison some 
values of U, at large enough values of t .  It seems that our estimates based on equation (4) are 
good enough at least for p < 0.2. 

Phase point u*(T.  P )  

i P Tc Simulation Theory 

1 0.01456 
2 0.05 
3 0.06 
4 0.075 
5 0.10 
6 0.20 
7 0.50 
8 0.0613 
9 0.075 

10 0.10 
11 0.124 
12 0.20 
13 0.50 
14 0.124632 
15 0.20 
16 0.50 

0.59 
0.59 
0.59 
0.59 
0.59 
0.59 
0.59 
0.78 
0.78 
0.78 
0.78 
0.78 
0.78 
0.89 
0.89 
0.89 

0.0821 ? 0,0001 
0.16: 
0.26: 
0.19: 
0.23t 
0.34: 
0.42: 
0.3072 2 0.0001 
0.36: 
0.45: 
0.52: 
0.61: 
0.72: 
0.5458 2 0.0002 
0.72: 
0.82: 

~ ~ _ _ _ _ _  

0.08 
0.16 t 0.01 
0.17 t 0.02 
0.18 t 0.02 
0.20 * 0.03 
0.37 t 0.05 
0.4 2 0.1 
0.31 
0.42 t 0.05 
0.51 t 0.06 
0.53 2 0.06 
0.6 t 0.1 
0.65 t 0.10 
0.55 
0.73 2 0.10 
0.75 2 0.15 

~~ 

+ At the final time during the evolution. 
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table 1 that the approximation (4) and our theoretical estimates for u , ( T )  are good 
enough at low densities. say p < 0.2. 

4. Microcalorimetric measurements 

The following binary Al-Zn alloys were analysed at T = 0.59 T,: A1-5.3 at.% 
(11.9 wt%)Zn, 6 ,8a t .% (15 wt%), 9.9 at.% (21 w t % )  and 12.1 at.% (25 wt%). The 
corresponding phase points are denoted by PI,-*" respectively: see figure 1. In addition. 
the A1-6.8 at.% (15 wt%)Zn allo) was also analysed at 0.64 T,; this is referred to as Pzl. 
Note that the coexistence line corresponding to Al-Zn does not have the symmetry 
properties characteristic of the model in § 2 (see figure 1): as a consequence. one should 
not make a direct comparison between the phase points in the group P1-16 and the ones 
at the same density in the group 

1 0 5  
0.1 0.3 0.5 

0 

Figure 1. Temperature-density section of the phase diagram. The full curve is the coexistence 
curve corresponding to the model system described in 0 2. The broken curve is the estimated 
coexistence line corresponding to the AI-Zn alloy (,Murray 1983). We report equilibrium 
values and the temporal evolution of the energy in the case of a computer model quenched 
to the phase points P,, i = 1. . . . , 16 (stars) and in the case of a real AI-Zn alloy quenched 
to P,, i = 1 7 , ,  . . , 21 (circles). 

The samples were kindly supplied to us by Cegedur-Pechiney, France: the maximal 
impurity contents are 0.004 wt% Cu, 0.003%Fe and O.O03%Si. Several different tem- 
peratures in the single-phase region were used: 275,  400 and 525°C. After homogeni- 
sation for at least 2 h,  the solid solutions were transferred into a differential microcalor- 
imeter of the Tian-Calvet type stabilised at temperature between 30 and 170°C. The 
estimated cooling rate in these air-cooled samples was about 30 "C min-', and hence was 
far from ideal. The exothermal heat effects, -dH/dt, which accompany the isothermal 
decomposition of the supersaturated solid solutions, were recorded as a function of the 
time as long as there was a measurable heat output (in general over ten days). By 
integrating these heat effects backwards from infinite time, the enthalpy still stored in 
the decomposing solid solutions may be evaluated at any time except at the very 
beginning (say < 30 min) of the process when the microcalorimeter is far from thermal 
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equilibrium owing to the introduction of the samples. The enthalpy we measure 

d H  
-dr - ( H Z  - H,)  = - 

r 

corresponds to the excess energy. U,  - U = .  present in the alloy at any moment. as the 
variations of the internal energy of a solid may be related to the enthalpic variations 
according to AH = A U + PAV + VA P. Thus (6) can be compared with U ,  - u X  via 
equation (3). 

21 1 I 1 
0 10 12 

I n t  

Figure 2. Log-log plot of the excess energy versus time (arbitrary units) in the case of the 
microcalorimetric measurements at PI-. and PI* (curves A and B respectively) and the 
simulation at PS (curve C); the temporal behaviours shown at different phase points are all 
qualitatively very similar. 

5. Scaling factors 

Figure 2 is a logarithmic plot of the excess energy versus time: two microcalorimetric 
measurements, P I ,  and Pis, are compared with the results from a computer simulation, 
Pj. The graph suggests that one may introduce scaled variables 

U” = ff1U t’ = f f z t  (7) 
in order to stress the similarity between sets of values corresponding to different phase 
points. Here a1 and LYZ are scaling factors such that, in terms of the reduced variables U* 
and t”, a set of values corresponding to a given phase point is shifted to overlap the data 
corresponding to a reference phase point when plotting In( U: - U : )  versus In t*. We 
shall first use P5 ( p  = 0.10, T = 0.6 T,) as the (arbitrary) reference, i.e. and a? equal 
unity in the case of Pj. Table 2(a) lists the values we obtain for and CY? at different 
densities and temperatures from a least-squares fit in the case of P, ,  i = 2-5, 11, 12, 
16-18. An arbitrary example of the scaling one obtains in this way is shown in figure 3 
where the data from a real experiment (P18) do indeed lie on the curve obtained from 
the computer simulation at Ps. 
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Table 2. ( a )  Values for ai, a2 and ur used to scale the data at the phase points indicated 
(‘shallow quenches’). They were obtained by requiring the best fit to the data at PS when 
plottingln(U,* -U:) versusln t*;seeequation(7). (b)As(a) , in  thecaseof‘deepquenches’, 
with reference to the phase point Pg. The values for Pg, however, were chosen to produce 
the best fit to the data at PS (see figure 4). 

i lIa2 

( 0 )  
2 
3 
4 
5 

11 
12 
16 
17 
18 

( b )  
6 
7 

13 
19 
20 

4.5 t 0.2 
3.7 * 0.1 
1.75 t 0.05 
1 
1 

0.024 t 0.004 
0.15 ? 0.02 
4.5 t 0.2 
(155 2 5)s  
(120 2 5)s 

0.385 
0.73 t 0.04 
0.46 t 0.04 
(40 2 2)s 
(9.2 t 0.8)s 

0.45 2 0.02 
0.51 t 0.02 
0.75 t 0.05 
1 
0.32 * 0.03 
0.80 t 0.05 
1.5 2 0.2 
(270 ? 10) J/mol 
(330 t 10) J/mol 

1.765 
2.5 t 0.2 
2.1 t 0.2 
(490 t 20) J/mol 
(215 t 15) J/mol 

0.157 
0.18 
0.191 
0.23 
0.52 
0.61 
0.71 

0.34 
0.38 
0.64 

- 
0 

2 4 0  
3 a 

E O  

Q 
0 

0 
0 

I I 

Figure% Theexcessenergyisplotted hereversus time. Thestarscorrespond toPS (simulation 
data with arbitrary units), the circles correspond to  PI^ (AI-Zn alloy) using ai’ = 330 J 
mol-’ and a?’ = 120 s ;  these values seem to have the expected order of magnitude (see the 
text). 
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The scaling factors used for figure 3 are respectively CY;' = 330 J mol-' and ai' = 
120s, as shown by table 2(a). Interestingly these values have the expected order of 
magnitude. As a matter of fact, taking the Essam and Fisher (1963) value for K/kBT, it 
readily follows from (3) that 

a;' = 2KNo = 0.44343 NokBT, (8) 

where No is Avogadro's number. Assuming that the critical temperature for the Al-Zn 
alloy is 597 K (Schwahn and Schwatz 1978) we have roughly CU;' = 2200 J mol-'. Con- 
cerning a2, we note that (1) indicates the interpretation of (2zo)-l as the rate probability 
when no change of energy is produced; using the Einstein relation for the diffusivity, 
D = (a&'2zo)/6, where a0 is the lattice spacing, one has 

CY;' = aa/12D (9) 
from which follows the crude estimate a;' = 110 s at T = 0.6 T,. 

The above estimates for a1 and a2 are admittedly crude. For instance, we have 
neglected the expected dependence of the scaling factors on the density p: larger 
densities cause a faster evolution of the system during the simulation (thus requiring 
larger values for a*) and larger values of the energy (thus decreasing a1). This behaviour 
is qualitatively evident in table 2(a) .  In spite of this and other oversimplifications, it is 
remarkable that the values in table 2(a) seem to have the expected order of magnitude. 
In fact, the observed differences may be interpreted as consequences of the model's 
simplicity: simple cubic lattice versus the FCC lattice with defects and lattice strains in the 
case of a real Al-Zn alloy, a sudden quench versus the slow process described in § 4, 
important differences when one compares the two coexistence curves (figure l), etc. 
We firmly believe this is another manifestation of the striking similarity between the 
behaviour of real systems and computer models (intimately related to a kind of 'univer- 
sality') that one observes near a phase transition even when kinetic processes are 
involved (see also Lebowitz er a1 1983, for instance). 

When preparing table 2(a)  we found it impossible to 'normalise' the behaviour at, 
say P7 or P13 to that at Ps.  Instead it seems that P6 (or 2'7) is a good refereme to most of 
the phase points not included in table 2 ( a ) ;  the corresponding scaling factors are shown 
in table 2(b). A detailed analysis of this is made in 0 6. On the other hand, table 1 refers 
to a number of phase points not included in tables 2: Pi, P8 and P14 on the coexistence 
line, where the system reaches equilibrium too quickly to allow a detailed study of 
kinetics; and Ps.  Pl0. Plj and Pzl where the system presents a very slow, untypical 
evolution probably corresponding to some sort of metastability. 

6. Power laws 

Previous studies (Binder et a1 1979, Lebowitz er a1 1983) have introduced the use of 
simple power laws when analysing the temporal evolution after quenching of the struc- 
ture function and cluster distributions. Concerning the excess energy, the classical theory 
of Lifshitz and Slyozov (1961) based on a monoatomic diffusion mechanism is con- 
sistent with a power-law behaviour 

AU E U ,  - U ,  cc t-b (10) 

with b = f. Also, Binder and Stauffer (1974) have shown than an effective cluster 
diffusion would imply (10) with smaller exponent, say b = Bat low enough temperatures. 
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a 

Figure 4. AU*(t*) '  is plotted versus (!*)I for the case of shallow quenches: P!( +). Pj(-), 
P 4 ( 0 ) ,  Ps( x). PI>(@), P I ~ ( A ) ,  P16(A).  PI,(^), PIS(@). The full curve is a fit to the data. 

* 
0 + 

0 + * 1 / 6  4 

Figure 5. As figure 5 but for the case of deep quenches: P6(+) ,  P7(*) ,  P,,(O), PI9(x), 
P,,(A). The full curve is a fit to the data. The broken curve is the same as the full curve in 
figure 4 and it is included for comparison. 
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However, the log-log plot in figure 2 clearly shows that there is no time regime that 
can be described by (10) with a constant value for the exponent b.  As, however, the 
simple microscopic mechanisms just mentioned should be relevant during the temporal 
evolution of the system, we have analysed the data on the assumption that 

AU" = yl( t")- '  + yz( t " ) - '  '. (11) 

The result is shown in figure 4 where AU"(t")' is plottedversus ( t x )1 '6  for the case of the 
experiments at Pb. P7, P13, P19 and P.0 corresponding to deep quenches. Figure 5 is a 
similar plot for the case of the data associated with shallow quenches. namely P!. P3. P,, 

The information provided by figures 4 and 5 seems quite interesting and varied. 
Firstly, it clearly shows how the excess energy presents a simple scaling with density and 
temperature. This is similar (but somewhat more general: the situation here holds at 
any time) to the result in a recent analysis of the behaviour of the structure function in 
computer simulations (Marro and Valles 1983). Those figures also seem to confirm the 
observation (Lebowitz et a1 1982) that there is a real difference, however small, between 
the behaviour near T, or near the coexistence curve for small p (the so-called shallow 
quenches) and the one at the centre of the phase diagram for large p and low T (deep 
quenches). The data in both cases can be fitted by parabolae or hyperbolae with the axis 
slightly rotated from the vertical direction. 

Figures 4 and 5 also differentiate two (very) well defined regimes during the evolution 
of the system, in the cases of both deep and shallow quenches. The initial regime is 
characterised by equation (11) with y1 d 0 and yr > 1 y l / ,  thus indicating that the t-' '-law 
(effective cluster diffusion) is then rather dominant. During the final regime, on the 
contrary, yr < 0 and y1 > 1 y ~ l  corresponding to the dominance of the t-' "-law (mono- 
atomic diffusion). The crossover between the two regimes occurs rather sharply around 
t" = 150 t 20, the error indicating the boundaries of the transition region. 

Ps,  P I ' ,  P E ,  PI63 PI7 and p18. 

7. Conclusions 

We have described, analysed and compared the data obtained from a series of computer 
simulations and from some microcalorimetric experiments. Our results strengthen pre- 
vious findings (Lebowitz eta1 1983 and references therein) and also seem to suggest 
some new interesting facts. 

The similarity between real and computer generated data is remarkable. In fact, we 
have shown that, concerning the behaviour of the excess energy versus time, one may 
group all the phase points considered into two groups, deep and shallow quenches, 
independently of the system considered: the differences between the behaviours in these 
two groups (see figure 5 ) ,  albeit numerically small, are significantly larger than the 
experimental scatter within each group. This confirms previous results concerning the 
structure function and cluster distribution. 

More precisely, we find that 
U, - U ,  = &;IF( a$) (12) 

where a1 and a2 are scale factors and F ( x )  is a function (which can be approximated by 
a combination of simple power laws) that differs slightly according to whether the data 
refer to deep or shallow quenches (but is otherwise independent of temperature and 
density). A detailed derivation of equation (12) will be given elsewhere (Toral and 

C7-G 
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Table3. Values of the parameters inequation (11) characterising the foursituationsdescribed 
in the text. 

Deep quenches Shallow quenches 

Initial regime y~ = -0.05 * 0.01 
~2 = 0.42 -t 0.02 y2 = 0.38 -t 0.01 

Final regime y1 = 2.6 2 0 . 1  ~1 = 3.1 i.0.4 
y~ = -0.52 0.02 y2 = -0.7 -t 0.1 

yi = -0.055 -t 0.005 

Marro 1984). We also provide theoretical estimates for U, in the case of the three- 
dimensional binary alloy or Ising model; these estimates are fully consistent with the 
numerical values obtained from the simulations at low densities (where the model system 
can reach the equilibrium state). 

The temporal evolution of the system, in the cases of both deep and shallow quenches, 
can clearly be characterised by two different regimes. We conclude that each regime 
may be interpreted as the result of competition between the Lifshitz-Slyozov mono- 
atomic diffusion and the Binder-Stauffer effective diffusion and coagulation of clusters. 
The latter mechanism happens to be rather dominant during the initial regime, while 
the system shows afterwards a rather sharp transition to a regime where monatomic 
diffusion is predominant. More data would be necessary before one could make conclu- 
sions (e.g. from a table such as table 3) about significant differences between deep and 
shallow quenches. 

Finally, we should emphasise that the temporal evolution of the excess energy is only 
described by a combination such as (11) and not by individual power laws t-b; that is, it 
seems inadequate to produce the usual log-log plots looking for single exponents b 
characteristic of the whole (or part of the) temporal evolution. The same statement 
probably holds for other quantities such as the moments of the structure function or 
cluster distributions, mean grain size, etc. 
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