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We numerically solve the Cahn-Hilliard equation in two dimensions for very large system sizes and
for two different values of the volume fraction ¢. We present results for the scaling function of the
droplet distribution function and compare it with several different theoretical predictions. We find that
for ¢ =0.05 the agreement between simulation results and recent theoretical predictions are reasonably
good, while none of the existing theories seem to agree well with the simulation data for ¢ =0.21.
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The dynamics of nucleation and growth for systems un-
dergoing a first-order phase transition has received much
attention in recent years [1]. This process occurs, for in-
stance, when a binary mixture with sufficiently small frac-
tion (¢) of one of the constituents is suddenly cooled from
a uniform, high-temperature phase to a point within the
coexistence region. In this case, the evolution of the sys-
tem proceeds by nucleation and growth of droplets of the
minority phase. It is, thus, of utmost importance to
characterize the time evolution of the droplet distribution
function, which determines the number of droplets of a
given size as a function of time.

Many theoretical studies of the final stages of this nu-
cleation process (known also as Ostwald ripening) have
been carried out for both two- and three-dimensional sys-
tems [2-8]. The main feature shared by all these analyti-
cal calculations is that they involve some systematic or ap-
proximate expansion in terms of the volume fraction and
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are supposed to be valid only for small values of ¢ (typi-
cally less than 10%). Previous numerical studies of this
process, using both microscopic models (spin-exchange ki-
netic Ising model [9]) and continuum models (Langevin
model with a conserved order parameter or the so-called
Cahn-Hilliard model [10]) have established that the late-
time behavior of the system can be described in terms of
scaling with a time-dependent length R(¢) which corre-
sponds to the average size of the droplets. These studies
find that both the scattering intensity and the cluster dis-
tribution functions show scaling behavior at late enough
times. However, these numerical studies are carried out
for relatively large volume fractions [11] and, thus, no sys-
tematic comparison of droplet distribution functions with
analytical theories can be done.

In this Rapid Communication we present a detailed nu-
merical study of the two-dimensional Cahn-Hilliard mod-
el in the nucleation regime for very small volume fractions
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and make a detailed comparison with existing analytical
theories. We find that for ¢ =0.05 the agreement between
simulation results and recent theoretical predictions are
reasonably good while none of the existing theories seem
to agree well with the simulation data for ¢ =0.21. We
believe that comparison with the scaling functions found
in this study will be a good test for future theories in two
dimensions valid over a larger range of volume fractions.
In the Cahn-Hilliard theory of the dynamics of first-
order phase transitions, one considers a conserved concen-
tration field, w(r,7), which represents the difference in the
local concentration of the two components of the mixture.
It is assumed that the time variation of this conserved field
is governed by the functional derivative of a free-energy
functional given in terms of a Ginzburg-Landau expres-
sion. After suitable rescaling of distance, time, and con-
centration field [12], the resulting equation of motion is
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A numerical study of the previous equation is very
demanding in terms of computer time and memory, even
for two-dimensional systems. First, the system has to
evolve over a sufficient period of time in order to reach the
scaling regime. On the other hand, as time increases, the
number of droplets decreases. If one wants to study the
behavior of the droplet distribution function at late times,
one needs a very large system in order to reach the late
stages with a reasonable number of droplets to avoid
finite-size effects and to obtain statistically meaningful re-
sults.

We have numerically integrated Eq. (1) using a
second-order Runge-Kutta scheme and periodic boundary
conditions. We have chosen a mesh size §x =1.0 for the
Laplacian discretization on a square lattice of size 5402
for volume fraction ¢ =0.05 and 2562 for ¢ =0.21. With
this choice for 6x we have found that droplets grow circu-
lar in shape and that the radius of gyration, R,, of a given
droplet is proportional to the geometrical radius and that
the mass of the droplet (total number of particles of the
minority phase in it) is given by 271'Rg2 to a great accuracy
(better than 1%). On the other hand, larger choices for
dx produce droplets that reflect the underlying symmetry
of the square lattice used in the numerical discretization.

In our study, we have considered two volume fractions:
¢=0.05 and 0.21. Particularly for the smaller volume
fraction considered, one has to be very careful with the in-
itial condition. Since the system is in the metastable re-
gion of the phase diagram, a strong fluctuation is needed
in the initial distribution of the order parameter in order
to allow for the growth of the initial random nuclei. We
chose the initial configuration to be a Gaussian distribu-
tion centered at yo=0.9 with a variance of magnitude 5.
For this particular choice of the initial configuration the
magnitude of the order parameter is very large initially at
random points on the lattice and one needs a very small
time step for the stability of the numerical integration in
the initial stage. However, the order parameter settles
down to values smaller than unity very soon and the time
step can be increased safely. We have carried out the nu-
merical integration up to r =20000 (in the above dimen-

RAUL TORAL, AMITABHA CHAKRABARTI, AND J. D. GUNTON 45

sionless units). From =0 to 100 the time step is chosen
to be 6¢=0.001, from =100 to 1000 the time step is
6t =0.025, and for ¢t > 1000 6t is fixed at 0.05. In order to
average over the initial random configurations, we have
performed 60 runs with different initial conditions. The
same parameters have been used for the case of volume
fraction ¢ =0.21 except that the Gaussian distribution for
the initial field is centered at yo=0.58. We have comput-
ed, among other quantities, the probability distribution
function fr(R,t), such that fg(R,7)8R is the probability
of finding a droplet of radius between R—&R/2 and
R+8R/2 [13]. Even for a 5402 lattice the number of
droplets at late times is not very large (around 30-40 for
the smallest volume fraction ¢ =0.05) and the values of
OR necessary to get smooth data need to be increased with
time.

The theoretical studies predict that the droplet distribu-
tion function should have a scaling form valid at late
times. The scaling assumption is that there is only one
relevant length. This can be defined, for instance, as the
mean value of the radius:

(R =" Rfe(R,0dR . @

It is, then, natural to define the new scaling variable,
xo=R/{R(t)). It is obvious that the mean value of xg is
(x¢)=1. The probability density function for the variable
Xo s

Feoxot) =2 1o (R0 =(RUfR(R,D) . 3)
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Scaling affirms that, at late enough times, the function
Sxo(x0,2) is independent of time ¢, i.e., fy,(x0,2) =f,(x0).
We have checked this scaling form for the droplet distri-
bution function using the simulation data. As shown in
Fig. 1, scaling holds quite well for ¢ =0.05 for ¢ > 4000.
Although we do not show it here for lack of space, scaling
holds for ¢ =0.21 as well. The details of these calcula-
tions will be published elsewhere [14].

The theories differ in their predictions for the scaling
function f,(xo). In order to compare with theoretical
predictions, one needs to note that the scaling variable

¢$=0.05
2.0 + 1=4000
o A t=8000
A 1=12000
1.5+ "?Ax“i o 1=16000
=20000
/2 e } M t:
Lo
é 1.0 b .,
'AI >
5 g
0.5} -
# ",
-,
0.0 A% : ! L R T
0.0 0.5 1.0 1.5 2.0
Xo
FIG. 1. Simulation data for cluster distribution function for

different times and for ¢ =0.05.
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used in different theories varies from one to another. In
general, the scaling variable x is defined as x =R/R*(¢),
where R*(¢) is some time-dependent length that might or
might not coincide with (R(¢)). However, due to the scal-
ing hypothesis, one can affirm that R*(¢) will be propor-
tional to (R(7)), and so the scaling variables x¢ used in
our study and the general scaling variable x introduced in
the theory will also be proportional to each other, i.e.,
xo=x/a with a some time-independent constant. By us-
ing the relation {x¢) =1 we can conclude that a =(x) and
then xo=x/(x). The probability density function of x,
S+ (x), will be related to the probability density function of
x¢ by the relation

fm(xo)-:—;— Fe () =0 f () =0 e (xolx)) . (@)
0

This relation allows us to compare the simulation data
with the theoretical predictions.

Let us now briefly review the different theoretical pre-
dictions. One theoretical study extends the Lifshitz-
Slyozov (LS) theory [5] to two dimensions [4,15] and is
only valid in the limit ¢— 0. This is the only theory that
yields an explicit expression for the scaling function
fL8(x), namely,

) —28/9 =17/9
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X
exp[9_6x]. (5)

The distribution is cut off for values x = 1.5. For this dis-
tribution one obtains (x) =1.0665.

The next theoretical prediction we consider is that of
Ardell [4]. The author has recently extended his earlier
theory for two-dimensional systems. This theory includes
the effect of diffusive correlations among nearest-neighbor
clusters by introducing an ad hoc cutoff limit in the
diffusion geometry. The distribution function needs to be
evaluated numerically.

In Marqusee’s theory [2], the surrounding droplets are
considered an “‘effective medium” and the distribution
function is derived in a self-consistent fashion. Again,
no closed form for the distribution .is found and it needs
to be evaluated numerically for each volume fraction.
Marqusee’s theory has recently been extended and gen-
eralized by Zheng and Gunton [3]. They use a new ex-
pansion parameter (instead of ¢'/? used by Marqusee)
and show that there is no finite cutoff for the scaled distri-
bution function. However, the authors expect that this
scheme breaks down for ¢ > 0.01.

Recently, Yao, Elder, Guo, and Grant (YEGG) [8]
have used a mean-field approach for both two- and three-
dimensional systems. In their theory, many droplet corre-
lation effects are approximated in the same manner as the
Thomas-Fermi approach for a Coulombic system. This
theory is inapplicable where the screening length is close
to the average radius of droplets and the authors found
that the calculations break down for ¢ > 0.085 in two di-
mensions.

In Figs. 2 and 3 we compare the predictions of different
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FIG. 2. Simulation data for cluster distribution function at
the latest time (+ =20000) for ¢ =0.05 compared with various
theories.

theories with the numerical data for volume fractions
¢=0.05 and 0.21, respectively. For an easier comparison
with different theories, we show the result for the distribu-
tion functions only for the latest time (¢ =20000) in the
above figures. In the above figures we do not show LS and
Zheng and Gunton results, since these distribution func-
tions are much too different from the simulation results.
The LS scaling function is sharper and much higher in the
peak (the maximum height of the LS distribution function
is about 2.5) than the corresponding numerical data.
These discrepancies are expected since, as mentioned ear-
lier, the LS results are only valid in the limit of zero
volume fraction. On the other hand, the calculations for
Zheng and Gunton [3] yield a distribution function which
is much too short near the peak (for ¢ =0.05 the max-
imum height of the Zheng and Gunton distribution func-
tion is about 1.0). It seems that this theory does not work
well for these volume fractions. For ¢ =0.05 we find that
the data agrees reasonably well (Fig. 2) with the predic-
tions of Yao er al. [8] and Ardell [4] (actually the
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FIG. 3. Simulation data for cluster distribution function at
the latest time (1 =20000) for ¢ =0.21 compared with various
theories.
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difference between these two theories are very small ex-
cept near the peak). We note that there are small dif-
ferences between the theoretical predictions and the nu-
merical data both near the peak and the tail of the distri-
bution. It seems that the location of the maximum is
slightly different in the numerical distribution function.
Since the uncertainties in the numerical results are larger
near the tail of the distribution, it is difficult to judge
whether the discrepancy near the tail is real or not.

For ¢ =0.21, the theory of Yao et al. does not yield any
result and Ardell’s result does not compare well with the
simulation data (Fig. 3). It seem that, for this volume
fraction, Marqusee’s theoretical result comes close to the
simulation results. However, there appears to be some
systematic differences between the data and the theory
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[16]. It seems, then, that a complete theoretical descrip-
tion of the nucleation and growth process in two dimen-
sions is still incomplete and we hope that our numerical
work will direct attention to this direction.
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