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Abstraci The ground slate of an extended @ Hamiltonian model including next-nearesl- 
neighbour interactions in one direction is analred on the basis of low coupling series 
apansions and numerical results. It is proven lhal the ground state show commensurate 
configurations whose wavenumbers depend on the values of the coupling conslants The 
model presents a ground state diagram very similar to the phase diagram obtained in 
lhe slandard ID king A"NI madel for T > 0 .  

One of the most commonly used models which exhibits modulated structure at 
T = 0 is the v4 model with anisotropic next-nearest-neighbour interactions (p4 
A"NI), originally introduced by Janssen and Tjon [ 11. This and other related models 
[Z-91 have been used to a m u n t  for the existence of modulated phases in materials 
such as Na,CO,, ThBr,, NaNO,, biphenyl, etc. Previous numerical and analytical 
studies [l, 10,111 of the 'p4 A " N l  model have partially elucidated the nature of its 
ground state configurations. In this work we give further insight into the nature 
and structure of the ground state by analysing the presence and stability of different 
configurations by means of a low coupling series expansion combined with numerical 
results. It is found that the ground state diagram is quite similar to the phase diagram 
obtained in the standard threedimensional Ising ANNNI model at T > 0 [IZ]. 

The model is defined by considering scalar fields { + ( T ) } ,  located on the N = L3 
sites T of a regular lattice in three dimensions with periodic boundary conditions. 
The spacing e, of the lattice is considered to be unity. The system Hamiltonian is 
given by 

W{C~(?)}) = -y C{-V(+(T)) + J~ +(TI [ 4 ( ~  + c=)+ 4 ( ~  + cy)] 

+ J ,  +(.)$(T + ",) + J z  +(T)4(T + 2%)) 

1 

r 

(1) 

where 21=, 21, and U* are, respectively, the unit vectors in the z, y and z directions. 
Jo  (assumed > 0) is the ferromagnetic coupling constant between fields located at 
nearest neighbour sites in the same 2 y  plane. J ,  and J z  are, respectively, the 
coupling constants between nearest and next-nearest neighbours in the t direction. 
The local potential V (  4) is taken to be 
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It is interesting to note that the usual Ising  AN"^ model I121 can be obtained as 
a suitable l i t  of the model defined by the Hamiltonian (1). ’Ib this end, let us 
introduce new rescaled values, S ( r ) ,  of the fields as: 
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In terms of these new variables, the Hamiltonian reads: 

t J ;  S(T)S(+ + 2=, )I  (4) 

where a = a 2 / b ,  J;I = Jo /a ,  J; = J , /a ,  J;  = Jz/a. In the limit Q -+ CO, the 
first sum in this expression restricts S ( r )  to take the values *l, and the Hamiltonian 
can be written as: 

1 W{S(r)l) = -E  {JL S ( r ) [ S ( r  + U,) + S(r  + U,)] 
S(r)=fl 

+ J; s ( r ) S ( r  + uZ) t -J; S ( r ) S ( r  + ZU,)} (5) 

which is the Hamiltonian of the king MI model. 
In studying the ground state of the Hamiltonian in equation (l), with V ( 4 ( r ) )  

given by equation (Z), we might assume that, due to the ferromagnetic coupling 
between the fields located in the same ry plane, all the fields in a particular ry plane 
take the same value, say +(z). This simplifies the Hamiltonian to a onedimensional 
(ID) type one, namely, 

‘M{4(~)1) = - - C { ~ a ’ 4 ( z ) Z - - $ b 4 ( r ) 4 +  J, d(z)4(z+l )+JZ 4 ( ~ ) 4 ( ~ + 2 ) }  

(6) 

1 

L ;  

where a‘ = a + 4 Jo and b are considered to take only positive values. The constana 
a‘ and b can be included in the field scale by defining a new field p(z) = fib( z )  
such that the energy becomes (apart from a constant multiplicative factor): 

where the J, and Jz constants have been rescaled by a factor a’. Expression (7) is 
the basis of our subsequent analysis. This Hamiltonian is similar to the one obtained 
by Janssen and Tjon [I]. 

The ground state of the above Hamiltonian is found by solving the equations of 
the variational problem 
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This leads to a set of L coupled equations: 

Ip(z)-’p(z)3+J, ( d - - ) + i p ( 2 + 1 ) ) + J Z  ( 4 . - - ) + i p p ( z + - ) ) = O  (9) 

for z = 1,. . . , L. For a given value of J , ,  J z  and L one can find, in general, many 
solutions of the above equations. Amongst these solutions, one has to select the one 
with the least energy. All the other solutions represent, in general, metastable (i.e. 
local minima) configurations or maxima of the Hamiltonian. 

One can classify the possible system configurations, q A ( z ) ,  according to the wave- 
length X of their basic periodicity. Configurations with X = M / M ‘  (M and M‘ 
natural numbers) are called commensurate. If X is an irrational number, the config- 
uration is called incommensurate. The search for possible solutions of equations (9) 
can be done in a systematic way by restricting ourselves to periodic solutions with 
a fixed wavelength A, and varying A. Let us comment that, strictly speaking, only 
commensurate configurations can be explicitly analysed numerically. For a given value 
of X = M / M ’  one has to solve the M coupled equations (9) for t = 1 , 2 , .  . , , M 
(together with the periodicity conditions p(t + M) = q(z)). These solutions are 
composed of 2M’  blocks. A block of length 1 is defined as a set of I neighbour sites 
with the same sign for the field ip surrounded by blocks of opposite sign (also, one of 
the ends of the block might take the value zero). For example, one of the solutions 
associated with X = y, corresponds to the configuration . . .  tTJlTttllTTJIl ..., 
where T (I) indicates a positive (negative) value for the field ‘p. This configuration is 
usually denoted by (223) or (2*3). 

A complete search for the solutions of equations (9) can be. simplified by splitting 
the parameter plane ( J , ,  Jz) into the two half-planes: (J, > 0 , J 2 )  and ( J ,  < 
0, Jz). Let us remark that the Hamiltonian given by equation (7) remains invariant if 
one changes the sign of ~ ( z )  for alternate values of z and changes J ,  + -J, .  This 
means that for a configuration with wavelength X and any values of the pair ( J1,  Jz) 
with energy W( J, ,  J z ,  A )  there exists, for the pair (-J1, J2), a configuration with 
wavelength A’ such that 

W ( J 1 , J z ,  = X ( - J 1 , J 2 , X ’ ) .  

It is easy to prove that the relationship between X and A’ is 

1 1 1 - + - = -  
X A‘ 2 

which is the same as that obtained in the king “NI model [13] . From now on, and 
due to the symmetry proved above, we restrict ourselves to the study of the half-plane 
(5, > O,Jz) .  If J ,  and Jz are both greater than 0 the ground state configuration is 
ferromagnetic (Fht), i.e. can be represented by X = M. If J ,  > 0 and Jz < 0 there is 
competition between both interactions and the situation is much more complicated. It 
is very difficult to find analytical solutions of equations (9), except for some particular 
cases, such as X = 4, 6 ,  8 and 03. We now consider the solutions when J ,  > 0 and 
Jz  < 0. 

As a first step, and by analogy with the solutions found in the king A”M model, 
we begin by looking for constant absolute value solutions, i.e. lp(z)I = p,,, Vz. 
In the Ishg A ” M  case the parameter plane ( J , ,  J2) is divided in three regions 
delimited by the three half lines, Ll: (5, = 0, Jz > 0), L2: (Jz = -+J,, J ,  > 0 ) ,  
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L3: ( J z  = $J1, J ,  < 0). In the region between lines L1 and L2 the ground 
state configuration is FM. In the region between lines L1 and L3 the ground state 
configuration is antiferromagnetic (m), and in the region between lies L2 and L3 
the ground state is of 2 'up' and 2 'down' spins ((22) configuration). This is true 
except for the lines L2 and L3 which are infinitely degenerate 1141. 

One can prove that in the q4 "NI model (and except for a few particular values 
of the coupling constants J , ,  J2) the only existing configurations with lp(z)l = 
vo, constant, satisfying the ground state equations (9), are those having blocks of 
length ii = 1, 2 and CO (which correspond, respectively, to the AFM, (22) and FM 
configurations). The energy of these configurations can be exactly computed with 
the conclusion that the minimum energy configurations are the same as in the king 
A"M model, and for the same range of values of the coupling constants. The main 
difference is that, instead of taking the constant value 1, po depends on J ,  and J2 
as: 
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\/1 + 2 ( J1 4- J z )  for the FM configuration 
for the k M  configuration 
for the (22) configuration. 

~~~~ ~ ~ ~~~~ ~ ~ ~~ . ~~ ~~ 

1 - 2 (5, - J z )  (11) 

Apart from the solutions described above, there are many other solutions to equations 
(9) that appear when we do not restrict the field values p ( z )  to take a constant 
absolute value. A first approach to find the ground state configuration (the solution 
of equations (9) with the least energy) is given by solving numerically equations (9) 
for different values of the parameters J,, Jz and comparing the energies for the 
solutions of different values of X = M / W .  In practice, we have restricted ourselves 
to values of A4 that are not too large (typicaily M 6 30). Of course, we cannot 
be absolutely sure that we have included in our numerical analysis all the relevant 
values for A, and it could well be the case that another phase with a very high value 
for M can actually have less energy that the ones considered by us. However, that 
seems to us a very unlikely possibility, as supported by the structure induced by the 
combination mechanism discussed below. The ground state numerical solutions that 
we find share the two following features: (i) they are composed of blocks of length 
I ;  = (X/2] or blocks of length I ;  combined with blocks of length t j  = [X/2]  + 1, 
with 1.1 the integer part of x, (U) the absolute minima of (7) are symmetric or 
antisymmetric configurations. It is possible to find many other solutions of (9), not 
sharing the features mentioned above, but they appear to be only local minima. 
Two typical configurations are shown in figure l (u)  and (6) for X = 5 and X = 6, 
respectively. Also a local minimum configuration of (7), which is neither symmetric 
nor antisymmetric, is shown in figure l(c). 

It was proved in a slightly different model [lo] that incommensurate configura- 
tions of the form p ( z )  = q0 cos(qz)  (with the wavenumber q # 0, ?r, . . .) are more 
stable than the (22) configuration, and it was suggested that this model exhibits in- 
commensurate states at T = 0. We found that this type of incommensurate structure 
can only exist if IJ, / J21 < 4, as it takes place in the Janssen and Tjon model [ 10,11]. 
We point out that this functional expression for q(z) indeed yields a more stable 
configuration than the (22) for some values of the parameters J,, J2. However, it 
cannot represent the ground stat= of the model since it does not satisfy equations (9). 
Furthermore, other commensurate configurations, l i e  the (23) or (33), are found to 
be more stable than these incommensurate states, for the different values of J ,  and 
J ,  that we have checked. 
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Figure 1. mica1 configurations for the ground slate corresponding to (a) X = 5 
(con6guration (23)) and (b) X = 6 (configuration (33)). In (c) we show the configuration 
(237432), which, despite of being a solution of equations (P), is not a ground State 
configuration. 

In figure 2 we show the schematic ground state diagram. This figure gives us 
strong evidence for the appearance of different branching processes. This is very 
similar to the branching processes appearing in the phase diagram of the Ising A " N 1  
model at T > 0 [15-171. In our case, as in [16], two configurations combine to give 
another one. For example, the configuration (34) originates from the FM and (33) at 
J ,  = 1.5957.. . and J2 = -0.6542.. .. 

Figure 2. Schematic representation oi the ground slate phase diagram. Some branch- 
ing p i n u  are located at the following values of (Jl, J2): a = (1.59571,-0.65422). 
b = (1.81628,-0.74095), c = (0.146312,-0.08379), d = (0.45886,-0.28386), e = 
(0.23263,-0,14484). 

It is interesting to further analyse the branching process occurring at the origin 
J ,  = Jz = 0. In particular, it is relevant to know which configurations reach the 
origin and which do not. To this end, we have performed a Rth-order low coupling 
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series expansions of configurations (2"3) (with n = 1, 2, 3). (33), (22), (34), (23,), 
(44) and the FM, as follows: 

with s + 1 < R. After substitution of this expansion in equations (9) we find the 
coefficients as,* (  z ,  A)  to the desired order in J ,  and J ,  (in our case R = 5). Once 
the field values pox( z )  have been obtained at that order, they are replaced in equation 
(7) to obtain the energy X(J1,JZ,X).  By equating the energy of two different 
configurations we find the Jz = J z ( J l )  line which separates both configurations. For 
instance, the line separating configurations FM and (22) is exactly given by Ja = 
- J ,  /2; the separating line between the m and (33) is: J z  = - J ,  /2 + 3 JT + O( J f )  

These last two separating lines differ in terms which are of order J t .  By studying 
the regions delimited by these lines we can identify which configurations exist as 
ground states in the neighbourhood of the origin. In general, to make sure that the 
configuration (2"3) reaches the origin we need to perform a R = (n + 2)-order 
expansion. It is then proven that the configurations (2"3), with n < 3, exist as 
ground states for a region close to the point J ,  = J z  =O. It is then reasonable to 
conjeeturc that the configurations (2"3), for all n, should spring from the origin. A 
similar analysis also shows that the configurations FM, (22) and (33) spring from the 
same point. 

One can also prove, using the series expansion, that configurations (232), (34) 
and (44) are never the most stable configurations in the neighbourhood of the origin, 
despite being ground state conligurations at the point J ,  = J ,  = 0 (an infinite 
degenerate point where all the configurations have the same energy per site 'Ff = -+). 
This seems to show that configurations of the type (23"),((23)n2m3P),(3n4), etc, 
do not spring from the point J ,  = J ,  = 0. However, these configurations can appear 
for greater values of J ,  and I Jz I, as shown in figure 2 

From figure 2 it can be seen that the conIigurations which appear in the ( J , ,  J,) 
ground state diagram are the same as those appearing in the phase diagram kT/J, 
versus z = - J , / J ,  obtained [12] for the king A " M  model at T > 0, and similar 
branching processes are observed. In particular, the branching p r o m  springing from 
the point J ,  = J2 = 0 in the q4 ANNNI model is exactly the same as the branching 
process springing from the point (T = 0, I = $) in the king " N I  phase diagram 
(compare figures 2 and 7 of [17] with our figure 2). Note that, in both models, only 
configurations of the type (2"3) and (33) reach the origin. 

In summary, we have studied an extension of the 'p4 model which includes ncxt- 
nearest-neighbour interactions in one direction. This model has been widely used 
to describe the low temperature phases of some materials exhibiting commensurate 
incommensurate transitions. We find that a large number of commensurate configu- 
rations appear in the ground state for different values of the coupling constants J1 
and J2. We observe branching processes very similar to the ones obtained in the 
Ishg " N I  model for T > 0, despite of the fact that the dependence of the field 
~p is diffcrent from the dependence of the magnetization in the lsing ANNNI case. 
Our ground state diagram extends previous ground state diagrams since it includes 
new stable commensurate structures, some of them obtained in an analytical way. 
Numerical values for some branching points are also given. Further extensions of the 

1 
and the separating line between the (33) and (22) is: J z  = -J,/2 - P - J z  + 0 ( J 3 )  

4 1  
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work presented here include the study of the phase diagram of the lp4 A"NI model 
at T > 0. In particular, a study of the dynamics of the model I181 could help to 
understand the selection mechanism of the diffcrent phases at low temperatures. 
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