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Numerical study of a Langevin model for the growth of wetting layers
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We present results of a numerical study of a Langevin equation describing the growth of wetting
layers that occur when a binary mixture phase separates in the presence of a wall that attracts one
of the two components of the mixture. We focus on the asymptotic behavior of the layer thickness
with time and compare our results with recent theoretical predictions, showing good qualitative
agreement. We also formulate and check a scaling hypothesis for the time evolution of the density-

profile function.

I. INTRODUCTION

Many binary mixtures undergo the process of phase
seperation when quenched from a high-temperature
phase to a point within the coexistence curve of the mix-
ture.! In this process, domains rich in either of the two
components 4 and B appear and grow with time. If the
mixture is in contact with a solid wall which favors com-
ponent B of the mixture, then a layer of the phase rich in
the B component will develop between the wall and the
A-rich phase. This situation occurs, for instance, in the
mixture of two liquids, one of which wets the wall and
the other does not. If hydrodynamic effects such as flow
and convection can be neglected, the main mechanism for
the growth of the wetting layer is the diffusion of B mole-
cules through the A-rich phase to the B phase in contact
with the wall.

The late stages of this diffusion-limited growth process
have been studied theoretically by Lipowsky and Huse?
for the case of stable or metastable bulk solutions. They
have developed a theory in which the growth of the wet-
ting layer thickness is characterized by an asymptotic
power-law behavior with time. The exponent of the
power law is determined by the parameters of the interac-
tion potential between the wall and the molecules of the
mixture.

The situation is different in the regime of unstable bulk
phase. In this case, the domain growth law of Lifshitz
and Slyozov® should be appropriate. According to this
theory, domains of the minority phase nucleate in the
bulk and at late times grow as ¢!/%. In the presence of a
wall, which preferentially attracts one particular com-
ponent, the growth of the wetting layer of this com-
ponent is given essentially by the same mechanism of
domain growth in the bulk. Thus, both the bulk domains
and the layer thickness are expected to grow as ¢!73,

A microscopic model for the study of these growth
processes has been introduced by Jiang and Ebner.* It
consists of an Ising lattice-gas model with Kawasaki
(conserved order parameter) dynamics in the presence of
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a long-range interaction potential between the particles
and the wall: the interaction being of different sign for
each of the two components of this mixture. Jiang and
Ebner also carried out extensive numerical studies of this
model and compared their results with the theoretical
predictions of Lipowsky and Huse.

In this paper we study the growth of wetting layers
starting from a field-theoreticl model. The main in-
gredient of this model is a conserved field variable that
represents the difference of concentrations between the
two components of the mixture. The equation of motion
associated with the field variable is given by a Langevin
equation as proposed by Cahn, Hillard, and Cook.®> We
study numerical simulations of this model for different
quench locations and make a detailed comparison with
the results of Ref. 2. We find a good agreement between
the theory and the numerical simulation, in the sense that
the thickness of the wetting layer evolves in time as a
power law with an exponent consistent with that predict-
ed by Lipowsky and Huse. We also formulate and test a
new scaling prediction for the density profile along the
direction perpendicular of the wetting layer.

In Sec. II we introduce the model and explain the nu-
merical methods used for the simulation. Section III
presents the main results of the simulation and makes a
comparison with the predictions of Lipowsky and Huse.
The main conclusions are summarized in Sec. IV.

II. MODEL AND NUMERICAL METHODS

In the Cahn-Hillard-Cook approach to the kinetics of
phase separation, one considers the following Langevin-
type equation governing the evolution with time (7) of
the field variable ¢(r,7), representing the difference of the
local concentration of the two components of the mix-
ture:

2, 0H

9 _ o 1
MV’8 +7, (1)

where H({¢}) is the Hamiltonian of the system including
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the interaction with an external potential V' (r). It is as-
sumed to have the following form:
H({¢})=Ho({¢}))+kpT [dr V(D)g(r) )

where Hy({¢}) is the standard Landau-Ginzburg Hamil-
tonian:

— b u K
Hol{$D)=ksT [dr |S¢2+ 267+ -(Vo* | . ()

Particular expressions for V(r) will be discussed later. In
Eq. (3), kp is the Boltzmann constant, T is the tempera-
ture, M is the mobility and b, u, and K are parameters
characterizing the Hamiltonian. 7(r,7) is a zero-mean
Gaussian distributed stochastic random-field process
which is completely determined by the following correla-
tions:

(n(r,7In(r', 7)) = —2Mky TV?8(r—1')8(1—1') . @)

This relation ensures, via the fluctuation-dissipation
theorem, that the stationary solution of Eq. (1) will be
distributed according to the Boltzmann distribution at
temperature 7.

The resulting equation of motion after performing the
functional derivative of the Hamiltonian is

g—szkBTVZ(b¢+u¢3~Kv2¢+ V)+q . (5
This equation can be cast in a much simpler form by suit-
able rescaling. Let us introduce_a new time variable
t=71/(MkpTK), a new field y=V'K ¢, a rescaled poten-
tial v(r)=V(r)/K, and new parameters 0=b /K,
X=u/k?, in terms of which the equation of motion (5)
becomes

%%=V2(9¢+)(¢3—V2¢+v)+§, (6)

where the new stochastic random field £ is still Gaussian
distributed of zero mean and satisfies the following corre-
lations:

(E(r,E(r,t'))=—2V28(r—1")8(t —¢') . (7)

A simple way of generating & in the numerical calcula-
tions is to write it as the divergence of a vector random
process €, i.e., £=V-e, where the components €',

i=1,...,d of the vector € are Gaussian distributed ran-
dom processes of zero mean and correlations given by
(eV(r,)e(r',1")) =25, ;8(r—r")8(t —1¢') . (8)

Our simulation has focused on two-dimensional sys-
tems. The numerical integration of Eq. (6) has been per-
formed by using a simple Euler integration method. The
time step required for convergence is found to be
8:=0.01. Due to the stochastic nature of the equation,
the results have been averaged for 10-20 runs depending
on the quench location. The spatial derivatives are calcu-
lated by introducing a lattice grid and considering only
the evolution of field values ; at location i of the grid.
The divergence and the Laplacian operators are then re-
placed by their lattice counterparts

d )
Ve 3 M —ged 9)
pn=1
and
2d
Vi 3 ¥, —2dy; . (10)
p=1

The index i, runs over the nearest neighbors of lattice
site i and we have considered the mesh size to be equal to
unity. Equation (1) ensures that the system order param-
eter (1) is a conserved quantity. Here, (1) is defined by

(¢>=N“§¢i , (11)

i=1

the sum running over the N lattice sites.

In the numerical simulations, we have considered a
rectangle of dimensions [—L,,L,]X[0,L,]. Typically,
we have chosen L, =40, L,=40 but we have checked
that the other values for L, and L, do not modify our re-
sults. The substrate is located at the line X =0. The po-
tential v (r) is considered to depend only on the distance x
from the substrate line. In this way, the wetting layer de-
velops on both sides of the line x =0. This construction
allows us to use periodic boundary conditions in both x
and y directions. The specific form considered for the in-
teraction potential is

g
W, |x]>0.5,

vix)= (12)

20ty x| <0.5 .

Since the theoretical predictions for the growth-law ex-
ponent depend on the quench location, it is essential to
determine the phase diagram of the model as accurately
as possible. We have recently carried out® a calculation
of the phase diagram for the “pure” system [when there
is no interaction potential v(r)], by using a heat-bath

0.0
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FIG. 1. Phase diagram of the ¢* model defined by the Hamil-
tonian H, in Eq. (3) with y=1. The critical value is
6.= —1.265. The solid circles represent the location of the
quenches studied in this work. The average order parameters
for each of the quenches are as follows: {(y) ,=0.7272,
($)5=0.543, () =0.6, and {(¢) , —0.6.
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Monte Carlo method combined with extrapolation tech-
niques.” Throughout the simulations we have considered
the values y=1, p =1 and 0 =0.1. Figure 1 shows the
phase diagram for this particular value of y. The critical
value of @ is found to be 8, = —1.265. The values of (')
at coexistence for other 6 values considered in the simula-
tions are as follows:

(P)f=—1,3=0.630,

(P)iG-_15=0.8998 ,
and

(Y5 _,=1.2204 .

We report here the results coming from four particular
quench locations, denoted by 4, B, C, and D in Fig. 1.
The particular values of the parameters used for those
simulations are given in the caption of Fig. 1.

We have measured the time variation of the density
profile function n(r,t), along the x direction. This is
defined as
Ll
> [P(r=(x,i),t)+P(r=(—x,i),1)] .

i=1

)=
n(rt) 2L,

(13)

The thickness of the wetting layer is obtained from the
density profile as the value /(z) that satisfies

n(l(t),t)=0. (14)
III. RESULTS

Figures 2 show the final stages of the configuration for
quenches B and C. In these figures, the layer develops on

FIG. 2 (a) A typical configuration showing the presence of a
layer rich in one of the two components, for quench at location
B (see Fig. 1) after a time t=5000. The layer develops on both
sides of the substrate line x =0, located at the center of the
figure. (b) Same as (a) for quench C.
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both sides of the substrate line x =0, located at the center
of the figures. For quench B we note that the layer thick-
ness is much larger than the corresponding one for
quench C at the same time (= 5000).

Depending on the final location of the quench, we can
distinguish two different behaviors: if the quench loca-
tion is near the coexistence curve, Lipowsky and Huse
predict that the intermediate time regime is described by
a growth of the layer thickness according to a power law:
I(t)<t". The exponent n is related to the exponent p [see
Eq. (12)} as n =1/(2(p +1)). For the same quench loca-
tion, the final approach to equilibrium is predicted to

behave as>®

1(t)—1(o0 )y ™12

1( ) being the equilibrium layer thickness.

As mentioned earlier, a different behavior is obtained if
the quench location is such that the system is left in a
point in the phase diagram deep inside the coexistence
curve. In that case, the theory of Lifshitz and Slyozov
predicts that the layer thickness should grow as
1(t) e t!/3,

1or (a)

! 1 |
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FIG. 3 (a) The layer thickness /() plotted vs ¢!/? in case 4
corresponding to the growth of layers from an unstable bulk
solution. The solid line is the least-squares fit to the data. We
can see that the Lifshitz-Slyozov prediction /(z) ¢!/ is well
verified in this case. (b) Same as (a) for case B which corre-
sponds again to the growth of layers starting from an unstable
bulk solution but closer to coexistence than case 4. The solid
line is the least-squares fit to the data. The Lifshitz-Slyozov pre-
diction /(t) < t'/* is well verified in this case.




43 NUMERICAL STUDY OF A LANGEVIN MODEL FOR THE ...

Of the four quenches locations depicted in Fig. 1,
quenches A4 and B are well inside the coexistence region.
We plot, in Figs. 3(a) and 3(b), the layer thickness ()
versus 7'/ to show that, in both cases, the Lifshitz-
Slyozov law in well satisfied. We do not observe any
difference between the two sets of data, even though
quench B is closer to coexistence than quench A.

Quenches C and D (Fig. 1) are very close to the coex-
istence curve. Quench C is actually on the coexistence
curve and quench D is just above coexistence. According
to the theoretical results, we distinguish between inter-
mediate times (growth of layers) and late times (approach
to equilibrium). Figures 4(a) and 4(b) show the layer
thickness /(¢) plotted versus ¢!/® for quenches C and D,
respectively. The exponent 1 is the theoretical prediction
corresponding to p =1 in the interaction potential [Eq.
(12)]. These plots show that, effectively, a power-law be-
havior characterized by an exponent n =1 is consistent
with the simulation data for early to intermediate times.
We see in Figs. 4(a) and 4(b) that the power-law behavior
breaks down after a time ¢=~1200 for both quenches C
and D. In Figs. 5(a) and 5(b) the same data are plotted
versus ¢ ~ /2 to check the asymptotic approach to equilib-

3r (a)
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FIG. 4 (a) The layer thickness /(¢) plotted vs ¢!/® for case D.
The exponent 1/6 corresponds to the prediction of the Lipow-
sky and Huse theory for the growth of layers from a stable
phase. This predicted behavior breaks down for ¢ = 1200 where
a different functional form is expected as shown in Figs. 5. (b)
Same as (a) for case C.

3441
4r (a)
~
-
N
y—
a
.|
0.10
(b)
~
~p—
| ——
yo—
O | 1
0.00 0.05 0.10
t-1/2

FIG. 5 (a) Plot of the layer thickness /(z) vs T~!/? to check
the prediction /(z)—1(e )<t~ !/ in case D. (b) Same as (a) for
case C.
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FIG. 6 (a) Density profile function n (r,¢) vs r for quench lo-
cation B at different times. (b) Same as (a) for case C.
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FIG. 7 (a) Test of the scaling hypothesis [Eq. (15)] for quench
B, by plotting n(r,t) vs the rescaled variable r/I(z). Scaling

holds quite well for ¢ >500. (b) Same as (a) for case C. Again
the scaling hypothesis [Eq. (15)], is well satisfied for ¢ > 500.

rium predicted by the theory. The data are fully con-
sistent with the theoretical prediction in both cases.

We now present results for the evolution of the density
profile function n(r,t). In Figs. 6(a) and 6(b) we plot
n(r,t) versus r for different times after the quench. One
expects that, at the late stages of evolution, the layer
thickness is the only length scale in the problem. We
then propose a dynamical scaling hypothesis’ for the den-
sity profile function in the following way:

n(r,t)=n(r/I[(t)) . (15)

Figures 7(a) and 7(b) show the density profile function
plotted versus r/I1(t) for quenches B and C, respectively
(similar graphs are obtained in other quench locations).

We can see from these figures that scaling is well satisfied
at late enough times.

IV. CONCLUSIONS

We have studied numerically a Langevin equation
describing the growth of wetting layers following a
quench of a binary mixture in contact with a wall that
favors one of the two components. We have studied the
dependence of the layer thickness and the density profile
function on the quench location. For quenches deep in-
side the coexistence curve, we have found that the layer
thickness has a power-law growth with an exponent of
as predicted by the Lifshitz-Slyozov theory. For
quenches near coexistence, two different regimes have
been considered: intermediate and late times. For inter-
mediate times, the layer thickness grows as t'/®, whereas
the approach to equilibrium is described by the law*?

1(t)—1(e0)xt 172,

These two behaviors are consistent with the theoretical
predictions of Lipowsky and Huse. We want to stress,
however, that it is very difficult to make a detailed quan-
titative comparison of the full predictions of the theory
(such as the prefactors of the asymptotic power-law be-
havior). Also, due to the smallness of the predicted ex-
ponent (1) for intermediate times it is difficult to exclude
other behaviors (such as other small exponents or even a
logarithmic growth).

We have also introduced a dynamical scaling hy-
pothesis for the density profile function for late enough
times. This scaling should be valid when the layer thick-
ness is the only length scale in the problem. We demon-
strate by numerical simulations that the scaling hy-
pothesis is actually very well satisfied at late times for the
quenches considered in this study.
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