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Abstract 

We review some recent results concerning numerical studies of the Cahn- 
Hilliard equation in three dimensions to describe the phase separation 
process in a mixture after a quench within the coexistence curve. We focus 
on the late time behavior for two experimentally relevant systems: binary 
alloys and binary polymer blends. We find that, in both systems, dynamical 
scaling with a time dependent characteristic length R ( t )  holds at  sufficiently 
late times and that the late-time behavior for R(r )  can be described by a 
modified Lifschitz-Slyozov law: R( t )  = c + d f ,  where n = 1/3. For polymer 
mixtures, the independence of the growth law exponent n of the quench 
temperature is in contradiction with some recent experiments on polymer 
systems. 

1. Introduction 

The process of phase separation is the subject of many theor- 
etical and experimental investigations in the field of small 
molecule or atomic systems, such as binary alloys, fluid 
mixtures and inorganic glasses [l], as well as in the field 
of polymer mixtures [2-41. When such a system is quenched 
from a homogeneous, high temperature, phase to a point 
deep inside the coexistence curve (a critical quench), a 
small amplitude, long wavelength instability develops. This 
phenomenon is known as spinodal decomposition. At later 
times, the small inhomogeneities in the order parameter 
evolve into macroscopic domains of one or the other phase 
and an interconnected structure is formed. The theoretical 
understanding of this phase separation process is based 
mainly on the Cahn-Hilliard-Cook (CHC) [5 ]  formulation. 
The main ingredient of the CHC theory is a conserved field 
variable $(x, T )  representing the local concentration of one of 
the components of the mixture (or, sometimes, the difference 
between the local concentration of the two components of 
a binary mixture). The time variation of this field is related 
to the functional derivative of a coarse-grained free-energy 
functional F[4] plus a thermal noise ~ ( x ,  T )  in the following 
way: 

6F - Mv2 - + q(x, T )  
84 
aT 64 
_ -  

where M is the mobility (assumed constant in the theory) 
and the thermal noise y~ satisfies the fluctuation-dissipation 
theorem: 

(V(X, T)V(X’ ,  7’)) = - 2 k ~  TMv26(X - X’)6 (T  - T’)  (2) 
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in order to ensure approach to equilibrium at a temperature 
T. The details of the free-energy functional F[4] depend on 
the particular system one wishes to consider. Analytical studies 
of this field-theoretical model have been reasonably successful 
in describing the early time regime of the phase separation 
process [6-81 but, due to their approximate nature, they are 
not as useful in the so-called late stages. This late time regime 
is characterized by the coarsening of domains separated by 
interfaces whose thickness is proportional to the equilibrium 
correlation length and, thus, much smaller than the charac- 
teristic domain size. The well-known Lifshitz-Slyozov [ 1 13 
theory, which assumes a limitingly small volume fraction of 
one of the two phases, is not strictly applicable to the case of 
a critical quench. Attempts have been made to use renormal- 
ization group [9] and low-temperature perturbation methods 
[IO] in order to study the late-stages of evolution process for 
a critical quench but the results of these studies are somewhat 
controversial. It seems then that numerical simulation would 
play a useful role, at least for the present time, in our ability 
to understand and to predict the late time behavior of such a 
complicated system. 

Numerical simulations for binary alloy systems tradition- 
ally have focussed mainly on discrete models [12] (Ising type) 
with a microscopic dynamics of spin exchange (Kawasaki 
dynamics) which conserves the order parameter. Recent 
numerical studies, however, of both the Ising model [13, 141 
and the CHC model in two dimensions [14-161 (and an 
alternative cell-dynamics version [ 17-1 91 of the CHC model) 
have suggested that the time dependent behavior of the 
characteristic size of the domains (as characterized by a 
power law behavior in time) and the scaling function derived 
from the pair-correlation function are the same within the 
numerical accuracy of the studies [19]. For many years, the 
only numerical results available in three dimensions were 
those from earlier pioneering Monte Carlo simulation of 
Kawasaki dynamics in the Ising model [12]. Recently, useful 
new results have been obtained by us [20, 211 for the three 
dimensional CHC model, which we will present in this review 
article. 

Analytical studies of spinodal decomposition in polymer 
mixtures have been carried out by several authors [22] by 
using the CHC formulation with a suitable free energy func- 
tional (based on the Flory-Huggins-de Gennes free energy). 
Due to the same problems one faces in the study of binary 
alloys, the calculations in polymer systems have dealt mainly 
with the early stages of the phase separation process. It seems, 
again, that numerical simulations can successfully probe the 
late time predictions of the theory that are unaccessible to 
analytical calculations. Monte Carlo simulation techniques 
have been used to study early stages of phase separation in a 
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lattice model of polymer mixtures in two and three dimen- 
sions [23, 241. Here, we discuss results of a detailed numerical 
study of the CHC model in three dimensions starting from a 
full Flory-Huggins-de Gennes type free energy and numeri- 
cally integrating the time evolution equation of the conserved 
order parameter. 

The main results of these studies are that the domain 
growth law for binary alloys is described by the modified 
Lifshitz-Slyozov law proposed by Huse [26]. In addition, the 
pair correlation function and the structure factor are shown 
to exhibit dynamical scaling for the binary alloy system. For 
polymer blends we find that the growth law for the domain 
size is independent of the final temperature of quench. As 
well, dynamical scaling is satisfied both for the pair corre- 
lation and the structure factor at sufficiently late times. 

2. Phase separation in binary alloys 
2.1. Model and numerical methods 
In this section we focus on computer simulation studies of a 
three-dimensional model system corresponding to the case of 
quenched binary alloys. The functional F[4]  for binary alloy 
systems is usually assumed to have the Ginsburg-Landau 
form: 

1 F = 1Sd.u 2 [ -b+’ + 44 + KlV4/‘ (3) 

where b, U ,  and K are phenomenological positive parameters. 
The resulting equation of motion obtained after substituting 
eq. (3) into eq. (1) is: 

Following Grant et al. [8] this equation can be written in a 
simpler fashion by suitable rescaling of the field, the distances 
and the time. The resulting dimensionless equation is: 

*’ + Itb3 - 

where I) = $/(b/u)“, r = .x/(K/b)‘”, t = t / (K/2Mb2) ,  E = 
(kB Tu/b’)/(b/K)”’’. v(r,  t )  is a Gaussianly distributed stochastic 
variable of mean zero and correlations given by ( v ( r ,  t)v(r’, 
t ’ ) )  = - V 2 6 ( r  = r’)6(t - f). At low temperatures, the 
role of the noise term is thought to be very small and does not 
affect some important features of the late stages of the evol- 
ution (e.g., neither the growth law for the characteristic 
domain size nor the scaling functions), as pointed out in the 
studies of the two dimensional version of the model [16]. 
Equation (5) in the absence of the noise term ( E  = 0) is called 
the Cahn-Hilliard equation and is the subject of several 
numerical studies. 

Numerically solving eq. (5) in three dimensions is com- 
putationally a very demanding task, even in the absence of 
the noise term. We have used a finite difference scheme for 
both the spatial and temporal derivitives. The spatial dis- 
cretization is achieved by replacing the continuous space of 
position vectors r = (x, y ,  z )  by a simple cubic lattice with 
N = L3 sites and lattice spacing 6 r  (periodic boundary con- 
ditions are assumed in order to avoid surface effects). We 
integrate numerically eq. (5) by using a first order Euler 

scheme: 

(6) 
a+ $(r ,  t + At) = I ) ( r ,  t )  + At - 
at 

In order to carry out the calculations within a reasonable 
amount of computer time one would like to choose a large 
time step and a moderately large system size. However, the 
discretized version of eq. (5) develops a subharmonic bifur- 
cation kind of instability for large time steps [16]. A linear 
stability analysis in three dimensions [2  11 shows that this 
bifurcation can be avoided by choosing the parameters At 
and 6 r  such that the following inequality is satisfied: 

(W4 At < 
36 - 3(6r)* (7 )  

This simple criterion turns out to be a necessary but not 
sufficient condition for the stability of the numerical integra- 
tion. We have chosen in our simulation 6r  = 1.7 and At = 
0.1. This value of At is more than three times smaller than the 
“safe” value predicted by eq. (7). We have found that smaller 
values of At do not change quantities that express a global 
behavior, such as the structure function, the pair correlation 
function or the typical domain size. We have considered a 
simple cubic lattice with L = 66, which is equivalent to 
saying that the linear dimension of the system (in the dimen- 
sionless units described before) L, z 112 units. We choose 
the initial field configurations to be distributed between 
- 0.125 and 0.125, with the order parameter equal to zero 
(i.e., a critical quench). In order to average over the initial 
random configurations we have performed 46 runs out to 
t = 10000 and 25 runs out to t = 20000. 

2 . 2 .  Computation of different probes 
Dynamical scaling and growth laws for the average domain 
size have been traditionally analyzed in terms of the structure 
function: 

where the sum over the lattice and the k vectors belong to the 
first Brillouin zone in the reciprocal space i.e., 

We then define a spherically averaged structure factor as: 

S ( k ,  t )  = c S ( k ,  t ) /n(k ,  Ak) (9) 
k - (Aki2)  < lkl g k + (AkI2)  

where 

n(k,  Ak) = c 1 
k - ( A k / 2 )  < lkl 6 k t ( A k I 2 )  

The quantity defined in eq. (10) denotes the number of lattice 
points in a spherical shell of width Ak centered around k .  
Ideally, one should take Ak as small as possible. A convenient 
value for the discretized Brillouin zone considered in the 
simulation, though, is Ak = (2n)/(LAr) .  For typical measures 
of domain size, one usually considers either the location k,(t) 
of the peak of the spherically averaged structure factor or the 
moment k,  ( t )  defined as: 

k k 
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In recent years, scaling growth laws have also been 
analyzed in terms of the real-space pair correlation function 
G(r,  t )  defined as: 

G(r,  t )  = eik'S(k, t )  
k 

In this case also we perform a spherical average procedure as 
described above and obtain the corresponding correlation 
function G(r, t). However, this procedure has the disadvantage 
that a simple point r represents an average over a spherical 
shell of width Ar, introducing an uncertainty in the coordinate 
r of the order of Ar/2. As a different measure we also study the 
correlation function G,(x, t )  averaged along the lattice axes: 

Ga(X, t )  = 3 [G(x,  0, O), t )  + G(r = (0, X ,  01, t )  

+ G(r = (0, 0, X I ,  01 (13) 

The domain morphology for the conserved order parameter 
produces a damped oscillatory behavior in both G(r, t )  and 
G,(x, t).  This allows one to give a quantitative measure of the 
domain size as the location of the first zero of the correlation 
function, The length R,(R,) was calculated fitting the four 
points in G(r, t )  (G,(x, t))  closest to its first zero (of which two 
fall on each side of its first zero) to a cubic polynomial of r(x) 
and defining Rg (R, as the value of r(x) where this fitted 
function vanishes. 

2.3. Results and discussion 
2.3.1. Late time conJguration of the system. The character- 
istic interconnected structure of a system at a late stage of 
spinodal decomposition is clearly visible in Fig. 1. In this 
figure positive (negative) values of the field $ are presented by 
opaque (transparent) points. We note that both phases form 
complementary spanning structures, which is similar to that 
observed in experiments on binary alloys [27]. 

The probability distribution for the field $(r, t )  is plotted 
in Fig. 2 for two late times during the evolution. We note that 
the distribution is very sharply peaked around the equilibrium 
values of $, i.e., - 1 and + 1. This indicates that the field is 
in local equilibrium spatially except at the interfaces. The 

Fig. 1. Snapshot of the system configuration at i = 20000. The region with 
a positive value for the concentration field is indicated opaque, while the 
region with a negative value is transparent. The spanning structure charac- 
teristic of spinodal decomposition is clearly visible. 
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Fig. 2. Probability distribution P ( $ ( r ,  f)) at two advanced times during the 
system evolution. Note that the distribution for both times is sharply peaked 
around the equilibrium values for the field, + 1 and - I .  

probability distribution function P($(r, t ) )  contains infor- 
mation about the interfaces [28] and a simple heuristic argu- 
ment allows us to relate P($(t ,  t ) )  to the interface profile. We 
find that the interface profile is essentially independent of 
time and well approximated by a hyperbolic tangent fit. We 
also note that the width of the interface is of the order of 1 .O 
and thus is about 4% of the maximum domain size. Since this 
number is small we believe that the system studied here is in 
an advanced stage of the evolution process. 

2.3.2 Scaling. The late stages of the dynamical process can 
be described in terms of an asymptotic scaling with a time 
dependent length. The fundamental assumption is that in the 
asymptotic scaling regime one length R ( t )  is relevant. This 
length R ( t )  represents the characteristic size of the domains. 
Then the dynamical scaling hypothesis states that: 

G(r,  t )  = g(r/R(t))  (14) 

l.o r 1.0 - 

....... .. ... 
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-0.2 I I 1 I 1 I I 
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-0.2 1 I I 1 I 1 I I 
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r/R,(t) 
Fig. 3. Spherically averaged pair correlation function as a function of r / R ,  
to check scaling ansatz eq. (14). R, is defined such that this plot goes through 
the point ( I ,  0). Scaling holds reasonably well after f = 5000 although up to 
t = 15 000 (see Fig. 3(b)). (b) Details of Fig. 3(a) near the first minimum of 
the scaling function. 
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and, consequently: 

S ( k ,  r )  = R(t)dF(kR(t))  (15) 

where both g(p) and F ( 1 )  are time independent functions. 
Figure 3(a) shows the scaling behavior of G(r ,  t )  with R, 

as the scaling length. The scaling hypothesis seems to be 
extremely well satisfied, over the whole range of values of r, 
particularly at late time. On the other hand, a detailed analysis 
of the first minimum of G ( r ,  t )  shows that the position of this 
minimum does not change with time but that the value of the 
minimum decreases systematically, at least up to t = 15 000. 
see Fig. 3(b). Also, the value of the scaling function in Fig. 3(a) 
at the origin is increasing slowly with time. This indicates that 
for very small values of the scaling variable p,  the curve in 
Fig. 3(a) is not quite yet the true scaling function. Scaling can 
not be checked for arbitrary large values of the scaling variable 
p either, due to the finiteness of the system. The periodic 
boundary conditions impose a maximum distance on the 
lattice equal to L,/2 = 56. When t = 20000, R, = 26.4 and 
the maximum value of the scaling variable p for which we can 
study scaling at this late time is then p = 2.12. We are, 
however, including in Fig. 3(a) data up to p = 3.5 in order 
to show that scaling is very well satisfied for larger values of 
p at relatively earlier times. 

We also concentrated on the correlation function G,(x, t )  
defined in eq. (13), mainly because there is no uncertainty in 
the coordinate .Y for this function in contrast to the case of 
G ( r ,  t ) .  We show the scaling of G,(x,  t )  by plotting this 
function against p = x /R ,  in Fig. 4. It is not surprising that 
there are large error bars associated with G,(u, t )  for large 
values of .Y since when .Y is larger than R, (which corresponds 
roughly to the linear size of the domains) the value of the 
correlation function is small and fluctuates widly. Unlesss 
there are a large numbers of pairs contributing to the cor- 
relation function errors become important and are actually 
comparable to the value of the function itself. We note that 
for large values of x, the number of pairs contributing to 
G,(.Y, t )  is much smaller than the corresponding number to 
G(r, t )  and hence G,(x, t )  shows much larger errors than G(r, t )  
for these large values of x. However, when .Y % R,, the 
correlations are computed for pairs mainly inside bulk 
domains and the fluctuations in the values of the correlation 
function are small. Thus the length R, calculated from the 
first zero of G,(x, t )  contains small errors, since G,(x,  t )  itself 
contains small error bars in this range of x values, as evident 
in Fig. 4. From this figure we conclude that very good scaling 

1.0 r 
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1=50@@ 
. ... .. . . ... 
____.. 1 - t=lO@@O I= 1 . .  5@@@ . 

1=2000@ - -__  

Fig. 4. Plot of the pair correlation function averaged along the lattice axes 
vs. x / R ,  to check scaling ansatz eq. (14) and possible anisotropy in the scaling 
functions. R, is defined such that this plot goes through the point ( I ,  0). The 
dispersion of values for large values of the abscissa is discussed in the text. 
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Fig. 5. Spherically averaged structure function S ( k .  t )  plotted to check 
scaling ansatz eq. (15)  using as scaling length the first zero of the spherically 
averaged pair correlation. An accurate form of the scaling function for small 
values of the scaling variable can not be determined precisely due to the 
finiteness of the lattice used in the numerical study. (b) Details of Fig. 5(a): 
For large values of the scaling variable plotted here we can determine very 
precisely the predicted form of the scaling function. 

holds at least for t > 10000 and values of .Y 5 R, whereas 
large error bars prevent us from commenting about scaling 
for larger values of x/R,. 

The scaling ansatz, eq. (15) can be tested by plotting 
S(k ,  t)/R,(t)3 vs. x = kR,(t) and checking whether the 
resulting functions are independent of time. In Figs. 5(a) and 
5(b) we show such plots for late times. It is clear from the 
latter figure that dynamical scaling is well satisfied for rela- 
tively large values of the scaling variable x, say x > 4.0. On 
the other hand, for small values of x the lattice discretization 
does not leave us with enough points to make a conclusive 
statement about scaling. However, we believe that the asymp- 
totic scaling function will not be significantly different from 
that shown in Fig. 5(a). We have compared the scaling func- 
tion with previous Monte Carlo data as well as some other 
theoretical and phenomenological results. We find that the 
scaling function computed in this study is narrower around 
the maximum than that observed in the Monte Carlo study. 
Although it is difficult to compare time-scales of the two 
different models, due to the inherent coarse-grained nature of 
the model studied here, we believe that the latest time of 
evolution studied in the Monte Carlo simulations for the 
“deep” critical quenches (less than 2000 Monte Carlo steps) 
is simply too small to be in the scaling regime. We have 
suitably rescaled the axes in Fig. 5(a) in order to compare 
with the phenomenological expression for the scaling func- 
tion introduced by Furukawa [29]. We find that this form 
does not agree with our data. Also, the scaling function 
predicted in a recent field theoretical low temperature expan- 
sion [lo] is not consistent with our scaling function. 

2.3.3 Growth law. The characteristic length scale given by 
any of the above measures, R,(t), R , ( t ) ,  or ka(r ) - ’  is expected 
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3 
% 15- 
e! 

to behave as f a  for sufficiently late time t .  The classical theory 
of Lifshitz and Slyozov, valid only in the limit where the 
volume fraction occupied by droplets goes to zero, i.e., near 
the coexistence curve in thenucleation regime, predicts a = 
1 /3 independent of the dimension. The Lifshitz-Slyozov 
theory, based on a mechanism of evolution governed by bulk 
diffusion across the interfaces, has been qualitatively extended 
to the case of equal volume fraction of the two phases with 
the prediction [26] a = 1/3. On the other hand, a recent 
theoretical study of the dynamics (combined with numerical 
simulations) predicts a = 1/4 for a critical quench [lo]. (A 
recent study proposes a crossover to a = 1/3, however [30].) 
Experiments in various systems have been analysed in terms 
of effective exponents a which lie in the range 0.15-0.37. In 
the Monte Carlo studies of the kinetic Ising model in three 
dimensions, the authors interpreted their results for the 
domain size in terms of an effective exponent in the range 
0.19-0.35, the smaller exponents corresponding to the critical 
quenches, although the authors claimed that the data are 
always compatible with a = 1/3. Figs. 6(a)-(c) show different 
measures of the characteristic length plotted against t I i 3  and 
f ' / 4 .  Although it is of course, difficult to distinguish between 
exponents 1/3 and 1/4 since their difference is small, the 
presented figures show tht R( t )  = c + dtIi3 is a better global 
fit than R( t )  = c + dt1/4 for all the above measures. This 
visual demonstration is not, certainly, the best way of extract- 
ing a growth law exponent. We also tried to find the best fit 
of our data to the more general expression R(t)  = c + dt". 
We have found the best fit for 50 < t < 20000 for R, 
provides a = 0.32 f 0.02. For R,(t)  and k, ( t ) - '  the best fits 
over the same time interval give a = 0.337 & 0.008 and 
a = 0.35 f 0.03, respectively. The errors are based purely 
on the statistical errors of the different lengths, without 
taking into account the possible inherent systematic errors in 
R, and k , ( t ) - l .  Another equivalent yet illuminating way of 
extracting a growth law exponent is to define an effective 
exponent: 

o b " " " " " " " '  10 20 30 
t'I4 (x 2.5) , t'" 

30 r 

o b " " ' " " " " "  10 20 30 
t'14 (x 2.5) , tIB 

30 r 

o b ' ' " - ' " ' ' ' " ' '  10 20 30 
t'" (x 2.5) , t'" 

Fig. 6 .  Domain size as given by the inverse of the first moment of the 
spherically averaged structure function (see eq. (9)) as a function of t'13 and 
2.5r''4. (b) Same as 6(a) for the domain size R, defined as the first zero of the 
spherically averaged pair correlation function. (c) Same as 6(a) for the 
domain size R, defined as the first zero of the pair correlation function 
averaged along the lattice axes. 

such that a plot of a,, vs. l/R(t) should give a straight line where, 
whose intersection at the origin is the exponent a. This log- 1 
arithmic derivative is done in practice by using: f(cp(r>> = -,[cp In cp + (1 - cp) In (1 - cp)l + xcpu - cp) 

(17) (19) 
and x is the temperature dependent Flory interaction par- 

Figure 7 shows the effective exponent when c1 = 10, for R, .  
The extrapolation to the origin gives a = 0.335 f 0.010. 

0.35 r t 

3. Phase separation in polymer blends 
3.1. Model and numerical methods 3 

2 0.30 
-e 
d 

v 

We consider a mixture of two polymer species, A, B, with 
chain lengths NA = NB = N and subunit size aA = aB = 1. 
In order to study spinodal decomposition in polymer mix- 
tures, we consider the concentration field cp(r, t )  of one of the 
two polymers and choose for F [q] the full Flory-Huggins-de 
Gennes free energy (in units of k B T )  given by [22]: o'28.00 0.05 0.10 0.15 0.20 0.25 

1 /Rm 

Fig. 7 .  Effective exponent a!:)(t) as defined in eq. (17) for the measure R, of 
the domain size. The ordinate of the straight-line-fit at the origin is U = 
0.335. 

(1 8) 
1 

F [ ( f l  = dx ( f ( q ( r ) )  + 36cp(l - q) 
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ameter. The resulting equation after substituting expressions 
(18) and (19) into the general equation (1) is: 

1 - 2 q  
36q2(1 - q)2 

+ 
(20) 

In experimental studies [4,3 1-34], one defines a rescaled wave 
vector k (in terms of the measured wave-vector q)  and a 
rescaled time T as: k = q/k;  and 7 = Da,p(k0,)2t. k: and Dapp 
appear in the linear theories and are defined as: (kO,)z = 
f(x - 1,) and Dapp, = 2M(x = x,), where x, = x(T = T,) = 
2/N. In our numerical studies, we have used the slightly 
different rescaling: k ,  = q(X - x,)-’” (correspondingly new 
space vector x = r(X - x , ) ” ~ )  and = 2M(x - X$t. The 
relation between simulation and experimental variables is 
simply k ,  = f l  k and 7 ,  = 2/97. Equation (20) becomes, 
in terms of these new reduced variables: 

1 - 2q 1 
(vq)2 - 18q(I - q) 

+ 36q2(1 - q)2 

+ J-& t(x, 7 , )  (21) 

where the new noise variable 5 satisfies ([(x, T,)<(x’, 5 ; ) )  = 
- V 2 6 ( r  - r’)6(t - t’) and E = (x - x S ) ” * .  For the poly- 
butadiene system studied in recent experiments [3 1-32], the 
critical temperature and the x parameter are known [35] and 
these values are used as the input for the numerical studies. 
Thus by varying x one can faithfully mimic the quench pro- 
cedure at different final temperatures. We have taken x = 
0.326/T - 2.3 x T, = 62°C and the temperatures 25, 
40, 49 and 54.5”C. With these input parameters, we have 
numerically integrated eq. (21) on a simple cubic lattice of size 
503 with periodic boundary conditions and mesh size A x  = 1. 
We have performed the numerical integration up to 7 ,  = 500 
using a time step of 0.01. In order to average over the noise, 
we have performed 20 runs for each quench temperature. In 
the following sections, however, we will report our results in 
terms of the rescaled variable k and z used in the experimental 
studies. 

3.2. Results 
3.2.1. Growth law. In order to study the growth law for the 
domain size and to examine the issue of scaling, we computed 
the spherically averaged structure factor S ( k ,  T )  and the 
spherically averaged pair correlation function g(r,  5 ) .  We 
have defined the domain size R,(r) as the coordinate of the 
first zero ofg(r, 7). We have also computed the location of the 
maximum of S ( k ,  T ) ,  k,(z).  Our results for k ,  are plotted in 
Fig. 8, for several values of the quench temperature, where we 
plot the data in a log-log scale. The determination of k, is 
difficult since at late times, the maximum of S ( k ,  5 )  is not 
precisely defined due to the discretization of the Brillouin 
zone in a finite lattice such as considered here. This explains 
the small bends in the k,  vs t curves for, say 5 > 500. 
Another source of error is the statistical fluctuation of data 
coming from different runs. For the domain size measures, 
the statistical errors are of the order of 5%. 

100 I0 I 10’ IO’ 101 

T 

10.’ 

Fig. 8. The maximum of the structure factor, k ,  vs. time T shown in log-log 
scale for several quench temperatures for the polymer blend studied here (see 
text). The growth law exponent (0.28 O.Ol) ,  computed for 50 < T < 1000 
is independent of the quench temperature. 

In Fig. 8 we see that the growth law exponent is independent 
of the quench temperature. This result is consistent with the 
claimed universal scaling of Ref. [33] and [34], but not with 
that of Ref. [31], where a quench-depth dependent growth 
law exponent is suggested for early to intermediate stages. 
The growth law exponent calculated from the slope of these 
log-log plots is given by 0.28 k 0.01. This value of the 
growth exponent is in excellent agreement with the experi- 
mental result for intermediate to “transition” times [32]. We 
point out that the physical mechanism governing the late time 
behavior in the model corresponds to the so-called “transition” 
times in experimental systems, whereas the real late time 
behavior seen in the experiments is governed by hydrodynamic 
interactions [36]. We also note that the exponents found from 
the log-log plots are probably effective exponents, since one 
expects [26] that the growth law for domain size R(z) is given 
by R(T) = a + bs”. A fit to this expression of the R, data 
between 7 = 450 and z = 2250 yields n = 0.33 k 0.01 for 
T = 25°C and n = 0.33 f 0.02 for T = 49°C. This value 
of the exponent suggests that the Lifshitz-Slyozov describes 
the growth of domains in this time regime. 

3.2.2. Scaling. In order to study the scaling hypothesis 
ansatz eq. (15) for this polymer system, we plot the data for 
the structure factor in Fig. 9, for several rescaled times t after 
the quench. If the scaling hypothesis eq. (1 5) is correct, all the 
data in Fig. 9 should fall on a single master curve. However, 
we note that the scaling hypothesis works only at later times, 
as shown in this figure. Also, although in Fig. 9 the structure 
factor data are shown only for the quench temperature 25”C, 
but the same qualitative picture is found for all the other 
quench temperatures. 

0 2  r 

0 

B 

. 
3 + x 
0 

0 .a 

+ 11225 

K 11450 

0 1.900 

0 1=1l25 
0 111350 

A 1-1575 

m 1.1800 
1-2025 

k/k,(t) 
Fig. 9. Plot of the scaling function for the spherically averaged structure 
factor. Scaling is satisfied only at late times, i.e., t > 1350. The lines are 
spline fits which serve as a guide to the eye. 

Physica Scripta T33 



18 J. D. Gunton, R. Toral and A .  Chakrabarti 

. T.54 

= 7-135 
r=1350 

1) r=1575 . 7.1800 
7.2250 

-2.4 -1.4 -0.4 06 1.6 2.6 

In k/k,(.r) 
Fig. 10. Plot of the above scaling function in log-log scale. The straight line 
is a fit to the data for large k ,  with a slope of - 3.6. 

In order to study the functional form of the scaling curve, 
we plot the structure factor data in a log-log graph in Fig. 10. 
It is again clear from this figure that the scaling hypothesis 
works only at late times when all the curves fall on top of each 
other. It is interesting to note that the scaling function exhibits 
a weak shoulder around k = 2k,(z) which has also been 
observed in the most recent experimental systems [32-331. 
The straight line in Fig. 10 is the fit to the data for large 
k-values. We find that for large k, the scaling function goes 
as k -  3 . 6 ,  which is close to the expected Porod’s Law behavior 
(K4). In recent experimental studies [32-331 it has also been 
found that for late times the scaling function behaves as k-4 
for large k .  

4. Concluding remarks 

In this paper we have reviewed recent numerical studies of a 
complicated stochastic nonlinear partial differential equations 
appropriate for modeling the dynamics of phase separation 
and pattern formation in binary alloys and polymer blends. 
An accurate solution of this equation requires the introduc- 
tion of a space discretization with a very large number of 
lattice points and a relatively small time step. Also, in order 
to confirm theoretical ansatz concerning the scaling behavior 
of the system, it is necessary to solve the equation up to a very 
late time. Finally, the stochastic nature of the equations 
requires an average over many realizations. This problem, 
thus, belongs to the category of those needing an extensive 
use of the resources (both memory and CPU) of powerful 
supercomputers. The studies reported here used more than 
400 h of Cray model X-MP48 central-processing unit time. 
We have focussed mainly on the late time behavior for a 
reasonably large system. We find that, at sufficiently late 
times, the scattering intensity and the pair correlation func- 
tions are well represented in terms of scaling with a time 
dependent length. Our analysis of the time dependence of this 
characteristic length supports a modified Lifshitz-Slyozov 
law in which the asymptotic growth law exponent is 1/3 for 
both the binary alloys and polymer blends. We also found 
that the growth law is independent of final quench tempera- 
ture for polymer blends. However, a definitive numerical 
calculation of this controversial exponent would require data 
spanning much larger times. Also, the exact form for the 
scaled structure function around the maximum can only be 
attained in studies involving much larger systems. 

Finally, we mention future directions in which we are 
extending our works. For binary alloy systems a recent simu- 
lation by us [37] in the two dimensional version of the model 
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discussed here, has indicated that the scaling functions for 
both the structure factor and the pair correlation function do 
not depend appreciably on the volume fraction at least for 
volume fractions betweeen 20-50%. Although, in numerical 
simulations it is difficult to probe very large r-values in the 
pair-correlation function (and consequently, very small values 
of wave vector k in the structure factor), this result is sur- 
prising, since analytical [38] and phenomenological [39] 
theories indicate a much stronger dependence of the scaling 
functions on the volume fractions. We point out that these 
analytical theories are valid in three dimensions and for very 
small volume fractions (typically less than 10%). Simulations 
of off-critical quenches in three dimensions are being carried 
out to check the validity of these approximate theories. 

As mentioned earlier, recent experiments on polymer 
blends indicate that the growth law for the average domain 
size depends on the final temperature of quench. We do not 
see such a temperature dependent growth law in our studies. 
However, ir. real polymer mixtures, the Onsager coefficient is 
wave-vector dependent [22] as well as the x parameter 
depends on composition [40]. We plan to address these 
questions in future studies. 
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