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We report results of a detailed numerical study of the phase separation process in a three
dimensional model of polymer blends. The model system considered by us is described

by Flory-Huggins—de Gennes free-energy functional. For a critical quench, we numerically
integrate the corresponding time evolution equation for the conserved order parameter

based on the above free-energy functional. We study the time dependence of the
characteristic domain size as well as the pair correlation function and the structure factor for
several quench temperatures. The results indicate that the growth law for the characteristic
domain size is given by a modified Lifshitz—Slyozov law and the growth law exponent

is independent of the quench temperature. We also find that both the pair correlation
function and the structure factors show dynamical scaling at late times.

I. INTRODUCTION

The process of phase separation in a quenched system
is the subject of many theoretical and experimental inves-
tigations in the field of small molecule or atomic systems,
such as binary alloys, fluid mixtures, and inorganic
glasses.! When such a system at the critical composition is
quenched from a homogeneous, high temperature, phase to
a point deep inside the coexistence curve (a critical
quench), a small amplitude, long wavelength instability
develops. This phenomenon is known as spinodal decom-
position. At later times, the small inhomogeneities in the
order parameter evolve into macroscopic domains of one
or the other phase and an interconnected structure is
formed. In recent years, the dynamics of spinodal decom-
position in polymer blends have attracted much
experimental>* and theoretical®™ interest, since in these
materials it is relatively easy to probe different regions of
the phase diagram over widely varying time scales. The
kinetics of phase separation in polymer blends is also
unique in the sense that one needs to consider the collective
movements of long-chain molecules in the process. Thus
the important objectives in the study of phase separation in
polymer mixtures are: (1) to look for universality in the
dynamics of phase separation in general and (2) to dis-
cover possible unique characteristics originating from the
presence of long-chain molecules in the system.
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The theoretical understanding of the phase separation
process in small molecule systems is based mainly on the
Cahn-Hilliard—Cook (CHC)® formulation. The main in-
gredient of the CHC theory is a conserved field variable
¢(x, t) representing the local concentration of one of the
components of the mixture (or, sometimes, the difference
between the local concentration of the two components of
a binary mixture). The time variation of this field is related
to the functional derivative of a coarse-grained, free-energy
functional F{¢] plus a thermal noise 7(x, ¢) in the follow-
ing way:

X v 1

at— %+"I(x, t)’ ( )
where M is the mobility (assumed constant in theory) and
the thermal noise 7 satisfies the fluctuation—dissipation the-
orem

(n(x, (X', )y = — 2kpTMV?5(x — x')8(t —t')
(2)
in order to ensure approach to equilibrium at a tempera-

ture 7. In this theory Fl¢] is usually assumed to have the
Ginzburg-Landau form Fg; [¢]:

1
Fauld1=; [ dr| — b6+ 36* + KIV412|.
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Analytical studies of this field-theoretic model have been
reasonably successful in describing the early time
regime®!lof the phase separation process, but, due to their
approximate nature, they are not as useful in the so-called
late stages. This late time regime is characterized by the
coarsening of domains separated by interfaces whose thick-
ness is much smaller than the characteristic domain size
R(1). The well known Lifshitz-Slyozov'? theory, which
predicts R(z) = at'/* at late times, is also not applicable as
such for the spinodal decomposition process, since this the-
ory is valid in the case of limitingly small volume fraction
of one of the two phases. Attempts have been made to use
renormalization group'’ and low-temperature perturbation
methods!® in order to study the late stages of evolution
process for a critical quench. Numerical simulation also
plays a useful role in our ability to understand and to
predict the late time behavior of such a complicated sys-
tem. Numerical studies'>!® have suggested that the char-
acteristic size of domains shows a modified'’ Lifshitz—
Slyozov growth law (R = a + b¢'/%) and that the growth
law exponent does not depend on the final temperature of
quench,'® as long as it is much smaller than the critical
temperature of the system. Numerical studies also give
strong support to the scaling ansatz, which states that at
the late stages of phase separation process, there is only one
length scale in the system, namely the characteristic size of
the domains and hence the structure factor and the pair
correlation functions should show dynamical scaling forms
at late enough time.

Analytical studies of spinodal decomposition in poly-
mer mixtures have been carried out by several authors®™”’
by using the CHC formulation with a Flory—-Huggins—de
Gennes free energy functional. Due to the same problems
one faces in the study of small molecule systems, the cal-
culations in polymer systems have dealt mainly with the
early stages of the phase separation process as well. It
seems, again, that numerical simulations can successfully
probe the late time predictions of the theory that are inac-
cessible to analytical calculations. Monte Carlo simulation
techniques have been used to study early stages of phase
separation in a lattice model of polymer mixtures in two'®
and three dimensions.'” In this paper, we discuss the re-
sults of a detailed numerical study of the CHC model in
three dimensions starting from a full Flory—-Huggins—de
Gennes-type free-energy and numerically integrating the
time evolution equation of the conserved order parameter
up to sufficiently late time. A preliminary account of this
study?® has already been presented. This study is of partic-
ular interest since there is some controversy about the dy-
namical behavior observed in experiments with different
polymer mixtures.2!"2> Recent experiments?! on the phase
separation of isotopic polymer mixtures have been inter-
preted to imply that (1) the growth law depends on the
final temperature of quench and (2) the scaling behavior
found in studies of small molecular systems does not seem
to be valid for polymeric systems. The authors of this paper
also suggested that the so-called “violation” of universal
scaling is not observed in theoretical studies since these
studies used with a Ginzburg-Landau-type free-energy,
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whereas the “true” free-energy functional for polymer mix-
tures is given by the Flory—-Huggins—de Gennes expression.
On the other hand, scaling was suggested to hold in several
other experimental works on different polymer blends.?*%*
Since the different experiments do not agree with each
other and there is no analytical theory valid at late times,
we expect that the numerical simulation carried out by us
will be useful in settling several important issues.

The main results of this study are the following. We
find that the domain growth law for the model of polymer
blends considered here is independent of the final temper-
ature of quench and is consistent with the modified
Lifshitz-Slyozov law.!” In addition, the pair correlation
function and the structure factor are shown to exhibit dy-
namical scaling at late enough times. The rest of the paper
is organized as follows. In Sec. II, we describe the model
and discuss the details of the numerical methods used. In
Sec. III, we discuss the main results and finally we con-
clude in Sec. IV with a brief summary and concluding
remarks.

li. MODEL AND NUMERICAL METHODS

A. Linear theory and definition of the rescaled
variables

We consider a mixture of two polymer species, A, B,
with chain lengths N, = Ny = N and subunit size a,
= ag = 1. In order to study spinodal decomposition in poly-
mer mixtures, we consider the concentration field ¢(x, )
of one of the two polymers and choose for Flg] the fuil
Flory-Huggins—de Gennes free energy given by>~’

m]—= fdx

kgT
where
1
fleM]=5lphe+ (1-@)n(1-@)] +xe(1—¢)
(5

and y is the temperature dependent Flory interaction pa-
rameter. The resulting equation after substituting expres-
sions (4) and (5) into the general equation (1) is

dp ) 1 @ 29
E—_-L(T)V [ﬁln(m) —2x¢+—a;lﬁ——z(v¢)

1
2

—_—— X, 1), 6
18¢(1_¢)]+7]( ) (6)
where we have defined L(T)
=1.

In the standard linearization approximation,"® which
is valid in the very early stages of the phase separation
process, one writes ¢(x, ¢) as a sum of the average volume
fraction ¢o( = 1/2 in this case) and a small deviation
8¢(x, t) from the average, i.e.,

¢(x, 1) =¢o + 6¢(x, 7). . (7

One then keeps only terms linear in 8¢(x, #) in the subse-
quent analysis. Linearizing Eq. (6) one finds

= MT and have set kp
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ddé(x, t)

3 S¢(x, t)

4 2
= 2l 2y Y2
=L(T)V [N 2y 9V

+ n(x, t). (8)

Then in terms of the Fourier components 8¢4(2) one writes

Eq. (8) as

38¢,(1) 4 2
o= —L(T)qz[,—v— 2x—§q2]5¢..(t) +714(0),
(9)

where
(Ma(8)n = o(£))=2L(T)g*8(z — ). (10)

The structure factor of the system is defined as S(q,t)
= (|¢q(#)|?) and can be written as

5(g,1) =S(g,0)2* " (11)

for early times. In Eq. (11) R(q) is the amplification fac-
tor for wave vector q and is defined as

4
R(q)=—L(T)q2[N—2x+§q2]. (12)
The linear theory predicts that fluctuations with wave vec-
tor 0 < ¢ < V247, become spontaneously amplified and
grow exponentially. The wave vector ¢°, at which the
growth rate is maximum is defined by

dR(q)

=0 13
dq 'q‘,’.. (13)

and is given by

0y2_2
where we have used y; = y(T = T,) = 2/N. One can also
define an apparent diffusion coefficient D, in the frame-
work of linear theory as

R(q)

Dypp= =2L(T)( s) - (15)
pp ;—’ 220 X—X

In experimental studies>*!?* one defines a rescaled wave
vector k (in terms of the measured wave vector g) and a
rescaled time 7 as

k=g4/q, (16)

and
=D, (g0) . (17)

In our numerical studies, we have used the slightly dif-
ferent rescaling: k; = g(y — x,) =12 (correspondingly
new space vector X; = (¥ — ¥,)/’x in terms of the old
space vector x) and 7; = 2L(T)(y — Xs)zt The relation
between simulation and experimental variables is simply:
k, = 972k and 7; = 2/97. Equation (6) becomes, in terms
of these new reduced variables

9 1 2[ Xs ( 4 ) 2y
a"'l 2(x — Xs) —@ X — Xs

2

_2¢ 1
+ 6<p’(1 O i P

+ \/Eg(xl) Tl)’ (18)
where the new noise variable £ satisfies
(E(xy, T)E(x], 7)) = — V28(x; — x{)8() — 77)
(19)

and € = (y — XS)'/Z.

Numerically solving Eq. (18) in three dimensions is
computationally a very demanding task. We have used a
finite difference scheme for both the spatial and temporal
derivatives. The spatial discretization is achieved by replac-
ing the continuous space of position vectors by a simple
cubsic lattice N = L3 sites and lattice spacing (mesh size)
Ar. We numerically integrate Eq. (18) by using a first
order Euler scheme,

a
¢(X1, 1 +ATI)=¢(X1,T1) +A‘rla_;pl (20)
with a time step A7;. In order to carry out the calculations
within a reasonable amount of computer time one would
like to choose a large time step and a moderately large
system size. However, the discretized version of Eq. (18)
develops numerical instability for large time steps. We
have used a time step of A7; = 0.01 to integrate Eq. (18).
We find that the numerical integration is stable for this
value of A7, and smaller values of Ar; do not change quan-
tities that express a global behavior, such as the structure
function, the pair correlation function or the typical do-
main size. For the polybutadiene system studied in recent
experiments,’""*? the critical temperature and the Y param-
eter are known?® and these values are used as the input for
the numerical studies. Thus by varying y one can faithfully
mimic the quench procedure at different final tempera-
tures. We have taken y = 0.326/T — 2.3 X 1074 T,
= 62°C and the quench temperatures 25, 40, 49, and
54.5 °C. With these input parameters, we have numerically
integrated Eq. (18) on a simple cubic lattice of size 50°
with periodic boundary conditions and mesh size
Ar = 1. We have performed the numerical integration up
to 7y = 500 (corresponding to 7 = 2250) for quench tem-
peratures 25 and 49 °C, whereas the integrations are car-
ried out to 7; = 50 (correspondingly = = 225) for quench
temperatures 40 and 54.5 °C. We have always started with
the initial configuration ¢ = ; everywhere and in order to
average over the noise, we have performed 20 runs for each
quench temperature. Although we have used rescaled vari-
able x; and 7, in Eq. (18), in the following sections, we
report our results in terms of the rescaled variable k and 7
used in the experimental studies for direct comparison. The
corresponding rescaled space vector is defined as r

=X .
B. Computation of different probes

Dynamical scaling and growth laws for the average
domain size have been traditionally analyzed in terms of
the structure function
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1
Sk, 7)= sz gd“[¢(r+r',r)¢(r', ) — ($)?1),
(21)

where the sum runs over the lattice and the k vectors be-
long to the first Brillouin zone in the reciprocal space, i.e.,
k = Qua/LArp, p=(u, My Kz), and 0 < py By Rof
< ] — 1. We then define a spherically averaged structure
factor as

Sk, t)= S(k, 7)/n(k, Ak),
k— (AK/2) < | k| <k + (Ak/2)
(22)
where
n(k, Ak) = > 1. (23)

k— (8k/2) > |k| <k + (Ak/2)

The quantity defined in Eq. (23) denotes the number of
lattice points in a spherical shell of width Ak centered
around k. Ideally, one should take Ak as small as possible.
A convenient value for the discretized Brillouin zone con-

sidered in the simulation, though, is Ak = I%E? Our re-

sults for S(k, 7) for various 7 are shown in Fig. 1 for
quench temperature 25 °C.

For typical measures of domain size, one usually con-
siders either the location &, () of the peak of the spheri-
cally averaged structure factor or some moment of
S(k, 7). We have calculated the location of the peak
k,,(7) in the following way. For different values of 7, we
have fitted the three points near the maximum of S(%, 7)
to a parabolic form and calculated k,(7) and §,(7)
= S(k,,, ) from the maximum of this fitted function.

Chakrabarti et a/.: Phase separation in a polymer blend

In recent years, scaling and growth laws have also been
analyzed in terms of the real-space correlation function
G(r, 7) defined as

G(r, 7)= 2, eX"S(k, ). (24)

k
In this case also we perform a spherical average procedure
as described above and obtain the corresponding correla-

tion function G(7, 7). We then define a normalized corre-
lation function g(7, 7) defined as

glr, 1) =G(r, 7)/G(r, 0) (25)

such that g(0, 7) = 1. The domain morphology for the
conserved order parameter produces a damped oscillatory
behavior in g(r, 7) (Fig. 2). This allows one to give a
quantitative measure of the domain size (R,) as the loca-
tion of the first zero of the correlation function. The length
R, was calculated fitting the four points in g(r, 7) closest to
its first zero (of which two fall on each side of its first zero)
to a cubic polynomial of r and defining R, as the value of
r where this fitted function vanishes.

Ill. RESULTS
A. Growth law

In several experimental studies,>?> when the rescaled
wave vector k,,(7) is plotted against the rescaled time 7,
one observes that the data for several different quench tem-
peratures fall on a universal curve, thus indicating that the
domain growth law is independent of the quench temper-
ature. However, as mentioned earlier, results of recent ex-
periments on isotopic polymer blends?'*? suggest a

FIG. 1. The spherically averaged
structure factor S(k, 7) vs k for sev-
eral values of 7 for quench tempera-
ture 25 °C. The symbols are as fol-
lowss: A (r = 225), +
(r = 450), X (1 = 6715), ¥ (7
= 900),  (r = 1125), & (=
= 1350) and ® (r = 1575).
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FIG. 2. The spherically averaged pair
correlation function g(r, ) vs r for
several values of 7 for T = 25°C.
The symbols are as follows: ) (7
225), ¢ (r = 450), ® (r
900), O (r = 1350), O (=
1800), and @ (v = 2250).
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quench-depth dependent growth law. Our results for
In k,, vs In 7 and In R, vs In 7 are plotted in Fig. 3(a) and
Fig. 3(b), respectively, for several values of the quench
temperature. The determination of k,, is less reliable than
that of R,, because k,, is computed by locating the maxi-
mum of the structure function, which particularly at late
times, is not precisely defined (see Fig. 1) due to the dis-
cretization of the Brillouin zone in a finite lattice such as
considered here. This explains the small bends in the In
k,, vs In 7 curves for, say, 7> 500 in Fig. 3(a). Another
source of error is the statistical fluctuation of data coming
from different runs. For the domain size measures, the
statistical errors are of the order of a few percents.

In Figs. 3(a) and 3(b) we see that the growth law
exponent is independent of the quench temperature. This
result is consistent with the claimed universal scaling of
Refs. 3 and 25, but not with that of Ref. 21, where a
quench-depth dependent growth law exponent is suggested
for early to intermediate stages. The growth law exponent
calculated from the slope of these log-log plots is given by
0.28+0.01. This value of the growth exponent is in excel-
lent agreement with the experimental result for intermedi-
ate to “transition” times.?> We point out that the physical
mechanism governing the late time behavior in the model
corresponds to the so-called ‘““transition” times in experi-
mental systems, whereas the “real” late time behavior seen
in the experiments is governed by hydrodynamic
interactions.?”*® We also find that the peak of the structure
factor S,,(7) yields an effective growth law exponent of
0.85+0.02 (Fig. 4), also in good agreement with recent
experiments.”?

We point out that the exponents found from the log—
log plots are probably effective exponents, since one

expects!” that the growth law for domain size R(7) is given
by R(7) = a + br". A fit to this expression of the R, data
between 7 =450 and 7 =2250 yields n =0. 33+0.01 fo
T =25°Cand n = 0.33 £ 0.02 for T = 49 °C. This value
of the exponent suggests that the Lifshitz-Slyozov mecha-
nism describes the growth of domains in this time regime.

B. Scaling

The late stages of the dynamical process can be de-
scribed in terms of an asymptotic scaling with a time de-
pendent length. The fundamental assumption is that in the
asymptotic scaling regime only one length R(7) is rele-
vant. This length R(r) represents the characteristic size of
the domains. Then the dynamical scaling hypothesis states
that

g(r, 7)=G[r/R(7)] (26)
and, consequently
S(k, 7)=R(7)F[kR(1)], (27)

where both G(p) and F(X) are time independent func-
tions.

Figure 5(a) and 5(b) show the scaling behavior of
g(r, 7) with R, as the scaling length for T = 25 °C and
T = 49 °C, respectively. The scaling hypothesis [Eq. (26)]
seems to be well satisfied, over the whole range of values of
r considered here, particularly at late times. However, scal-
ing can not be checked for arbitrary large values of the
scaling variable p due to the finiteness of the system.

The scaling ansatz, Eq. (27) can be tested by plotting
S(k, 7')k,,,(7')3 vs X = k/k,,(7) and checking whether the

J. Chem. Phys., Vol. 92, No. 11, 1 June 1990
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FIG. 3. (a). The location of the maxi-
mum of the structure factor k, vs 7

shown in log-log scale for several

quench temperatures. The growth law
exponent (0.28 =+ 0.01), computed for
50 < 7 < 1000 is independent of the
quench temperature. (b). The charac-
teristic domain size R, calculated from
the pair correlation function (see the
text) plotted against rescaled time 7 for
several quench temperatures. The qual-
itative behavior is same as in (a).
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FIG. 4. The maximum of the structure
factor S,, vs 7 shown in log-log scale
for quench temperature 77 = 25°C.
The growth law exponent for
S,(0.85 =+ 0.02), computed for 50
< 7 < 1000 is also found to be indepen-
dent of the quench temperature.
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resulting functions are independent of time. In Figs. 6(a)
and 6(b) we show such plots for late times. It is clear from
these figures that dynamical scaling is well satisfied for
large times 7. Scaling is not totally satisfactory near the
peak due to the uncertainty in locating the maximum of
the structure factor at late times, as discussed earlier. Since
we believe that the computation of R, is more reliable at
late times, we also show the scaling plot of
Sk, T)/Rg(¢)3 vs kR (7) in Fig. 6(c) for the quench tem-
perature 25 °C. By comparing this plot with that of Fig.
6(a) it seems that this scaling plot is relatively smoother
than that with k,,(7) as the scaling variable.

In order to study the functional form of the scaling
curve, we plot the structure factor data for both
T = 25°Cand T = 49 °C in log-log graphs in Figs. 7(a)
and 7(b), respectively. It is again clear from this figure
that the scaling hypothesis works at late times where all
the curves fall on top of each other. It is interesting to note
that the scaling function exhibits a weak shoulder around
k =~ 2k, (7) which has also been observed in the most
recent experimental systems?>2* and predicted in some the-
oretical calculations” as well. The straight lines in Figs.
7(a) and 7(b) are the fit to the data for large k values for
each quench temperature. We find that for large k, the
scaling function goes as &~ ¢, which is close to the ex-
pected Porod’s law behavior (k~*). In recent experimen-
tal studies?>?* it has also been found that for late times the
scaling function behaves as k ~* for large k. In order to
compare the scaling functions with the phenomenological
expression for the scaling function introduced by
Furukawa,’®*! we suitably rescale the axes of the scaling

functions [such that the maximum of the scaling function
is located at (1,1)] and compare with the Furukawa func-
tions

2

F(X) =3I+ 0 (28)
and
3x3
F(X)=m (29)

in Fig. 8. It is clear that neither of Furukawa’s forms
agrees with our data over the whole range of k values.

IV. CONCLUDING REMARKS

In this paper we have presented detailed numerical
studies of a complicated stochastic nonlinear partial differ-
ential equation appropriate for modeling the dynamics of
phase separation and pattern formation in polymer blends.
An accurate solution of this equation requires the intro-
duction of a space discretization with a very large number
of lattice points and a relatively small time step. Also, in
order to confirm theoretical ansatzs concerning the scaling
behavior of the system, it is necessary to solve the equation
up to a very late time. Finally, the stochastic nature of the
equations requires an average over many realizations.
Thus, this problem belongs to the category of those need-
ing an extensive use of the resources (both memory and
CPU) of powerful supercomputers. We have focused
mainly on the late time behavior for a reasonably large

J. Chem. Phys., Vol. 92, No. 11, 1 June 1890
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FIG. 5. (a). Plot of the scaling func-
tion defined in Eq. (26) for the
spherically averaged and normalized
pair correlation function for quench
temperature 25 °C. The symbols have
the same meaning as in Fig. 2. Scal-
ing is well satisfied at late times. (b)
Plot of the scaling function defined in
Eq. (26) for the spherically averaged
and normalized pair correlation func-
tion for quench temperature 49 °C.
The symbols have the same meaning
as in Fig. 2. Scaling is well satisfied at
late times.

Downloaded 31 Mar 2005 to 130.206.78.208. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Chakrabarti e a/.: Phase separation in a polymer biend

0.0 1.0
k/k (1)

0.06

v
A
3 . s
o

lov
AP Pee my o o

0.0 ll.U
k/k_ (1)

J. Chem. Phys., Vol. 92, No. 11, 1 June 1990

|
2.0

6907

FIG. 6. (a) Plot of the scaling func-
tion defined in Eq. (25) for spheri-
cally averaged structure factor with
k! as the scaling length and for
quench temperature 25 °C for several
values of 7. The symbols are as fol-
lows: A (r = 225), +
(r = 450), X (7 = 675), v (r
900), ¢ (r = 1125), ¢ (=

1350), ® (r = 1575),(r
1800), O (7 = 2025), and W (7
= 2250). (b) Plot of the scaling func-
tion defined in Eq. (25) for spheri-
cally averaged structure factor with
k; ! as the scaling length and for
quench temperature 49 °C for several
values of 7. The symbols are the same
as in (a).
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FIG. 6(c). Plot of the scaling func-
tion defined in Eq. (25) for spheri-
cally averaged structure factor with
R, as the scaling length and for
quench temperature 25 °C for several
values of 7. The symbols are the same
as in (a). The vertical axis is multi-
plied by 10°.

FIG. 7. (a) Plot of the scaling function
[as in Fig. 6(a)] in log-log scale. The
straight line is a fit to the data for large k,
with a slope of — 3.6. (b) Plot of the
scaling function [as in Fig. 6(b)] in log—
log scale. The straight line is a fit to the
data for large k, with a slope of — 3.6.
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FIG. 8. Plot of the normalized scal-
ing function for the structure func-
tion for quench temperature 25 °C
(see the text) in a log-log scale.
The solid and the dotted lines are
the predictions of Egs. (28) and
(29), respectively.
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system, in the absence of hydrodynamic interactions. We
find that, at sufficiently late times, the scattering intensity
and the pair correlation functions are well represented in
terms of scaling with a time dependent length. Our analysis
of the time dependence of this characteristic length sup-
ports a modified Lifshitz—Slyozov law in which the asymp-
totic growth law exponent is 1/3. We also found that the
growth law is independent of the final quench temperature.

Finally, we mention future directions in which we are
extending our works. As mentioned earlier, recent experi-
ments on polymer blends indicate that the growth law for
the average domain size depends on the final temperature
of quench. We do not see such a temperature dependent
growth law in our studies. However, in real polymer mix-
tures, the Onsager coefficient is wave vector depf:ndent,s’7
as well as the y parameter depends on composition.’? We
plan to address these questions in future studies.
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