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We present results of a numerical study of the two-dimensional time-dependent Ginzburg-Landau
model with a random magnetic field. The growth of domains after a quench to low temperatures is
investigated. Our results are, in general, consistent with the theories of Villain and of Grinstein and
Fernandez. In particular, the predicted logarithmic growth is observed. The scaling behavior of
the structure factor is also investigated. The zero-field scaling function closely agrees with the re-
sult of a theory of Ohta, Jasnow, and Kawasaki. For finite fields some evidence for the breakdown

of scaling is obtained.

I. INTRODUCTION

The random-field Ising model (RFIM) has been the
subject of considerable research effort! both theoretically
and experimentally. As is typical of random systems, the
free energy has numerous local minima in the phase
space rendering the analysis of the equilibrium state and
of the ordering characteristics rather difficult. It has only
recently been established that the three-dimensional
(d =3) RFIM is ordered at low temperatures for small
field strengths.?® Imbrie? has proved that in d =3 the
ground state of the RFIM is ordered for small value of
the random field. However, some doubts remained after
that about whether the system orders at any finite tem-
perature in three dimensions. Subsequently, Brickmont
and Kupiainen,® inspired by the scaling arguments of
Imry and Ma,* carried out renormalization-group calcu-
lations in the domain-wall representation of the system
and settled the issue in favor of finite-temperature order-
ing in three dimensions in two dimensions the order is
destroyed by the random-field induced roughening, for
any nonzero field. Thus, the lower critical dimension for
this model is now known to be 2.

The large number of metastable states present in the
RFIM affects the dynamics of the system at low tempera-
tures. The local clusters of random fields influence the
formation of domains and subsequently slow down the
evolution of these domains to the final equilibrium state.
In this paper we consider the growth of unstable domains
after the system is quenched from a high-temperature
disordered state to a low-temperature state. The mecha-
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nism of domain growth in the case of the pure model
(zero field) with nonconserved dynamics is now thought
to be well understood.’ Highly convoluted domains of
ordered phase form in an early time regime after the
quench. These domains then grow with time, the driving
force being the reduction of their surface energy (and
thus their curvature). The average size of the domains
R (1) follows the well known Lifshitz-Allen-Cahn® (LAC)
growth law R (¢)~t!/2. It is also found that at the late
stages of evolution there is only one length scale in the
system, namely the characteristic size of the domain
R (1). Consequently, the structure factor satisfies a scal-
ing relation.®’

In the presence of a random field the overall behavior
of the domain growth is determined by the competition
between the opposing tendencies of curvature driven
growth and the roughening of the interfaces due to the
random field. Although no detailed microscopic theory
of the dynamics of the RFIM has been developed so far, a
general picture of the growth can be given as fol-
lows:"37 ! as in the pure model, convoluted domains
form rapidly after quench. In an early time regime, the
domains grow more slowly than in the case of zero field,
due to the effects of the random field. This regime is fol-
lowed by a late time regime in which the domain walls
start getting pinned by the random field. This leads to a
logarithmic growth characteristic of random systems. 12

Experimentally, random-field models can be realized in
diluted antiferromagnets in a uniform external field, 13 ad-
sorbed monolayers on impure substrates, '* binary liquid
in gels,' frustrated antiferromagnets,'® etc. Experi-
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ments!” on three-dimensional diluted antiferromagnets in
a uniform magnetic field observe anomalously slow
growth!® following a temperature quench. Some aspects
of the expeirments may involve a novel kind of critical
slowing down,!® however. In a recent experiment?® of
growth Kkinetics of a chemisorbed overlayer in the pres-
ence of impurities [which is a model of RFIM (Ref. 14) in
two dimensions] the results for the domain growth are in-
terperted in terms of an effective power law where the
effective exponent is always less than the LAC value of 1
and monotonically decreases with increasing impurity
concentrations (i.e., field strengths).

Numerical studies of domain growth in RFIM have
been carried out so far by using a Monte Carlo simulation
on discrete spin stochastic dynamics.?! 2% The behav-
ior'® R(t)~In% valid at intermediate times has been
checked by Chowdhury and Stauffer?! and by Pytte and
Fernandez.?? An early-time small-field theory by Grant
and Gunton'! has also been checked to some extent by
Gawlinski et al.?* The authors of Ref. 23 also found that
the self-similar scaling for the structure factor breaks
down for long times. Anderson®* has carried out a de-
tailed simulation of RFIM in two dimensions and has
carefully analyzed the validity of several theoretical argu-
ments.® ! His calculations strongly support the late-
time theories of Villain® and Grinstein-Fernandez. 1°

In this paper we have considered the continuous ver-
sion of the RFIM with relaxation dynamics, which is
often used in theoretical calculations.! Specifically, we
have analyzed, by direct numerical solution, the non-
linear Langevin dynamics of the two-dimensional ¢*
model in the presence of a Gaussian random external
magnetic field. The Langevin dynamics model has been
previously®® used to study growth kinetics in pure mod-
els. Here, we find a strong correspondence between the
coarse-grained model and the kinetic Ising model in the
presence of randomness, i.e., a random magnetic field.
These calculations thus serve as a test of the validity of
the time-dependent Ginzburg-Landau model in the
analysis of complicated random systems. This is notable,
since analytical calculation of the dynamics of random
systems quite often start from the coarse-grained model.
Our results for the time dependence of the domain size
demonstrate the existence of various time regimes in this
growth. For a suitable value of the field strength, we
have obtained clear evidence for the logarithmic growth
predicted by Villain® and Grinstein and Fernandez. '°

We have also investigated the scaling behavior of the
structure factor. In the case of the pure model, the form
of the scaling function seems to be well described by a
theory of Ohta, Jasnow, and Kawasaki® (OJK) at low
temperatures. This theory has been previously checked
by a Monte Carlo simulation of the discrete Ising mod-
el.?® Our results for the scaling function obtained by a
direct numerical solution of the underlying Langevin dy-
namics constitute a strong check of the theoretical pre-
dictions. We have obtained good agreement with the
OJK theory in the absence of the field. In the presence of
the random field, scaling behavior has been predicted to
break down in two dimensions,'! due to the absence of
long-range order in two dimensions. Evidence for the

breakdown was obtained in a Monte Carlo study of the
discrete RFIM.? Our results for the Langevin model
also provide some evidence for a breakdown of scaling for
large-field strengths and for small wave numbers.

The rest of the paper is organized as follows. In Sec.
II, we describe the model and the method of numerical
calculations. In Sec. III, we present our main results
about the growth law and the scaling functions. We con-
clude with a brief summary in Sec. IV.

II. MODEL AND THE METHOD OF CALCULATION

We consider a Ginzburg-Landau-type free-energy func-
tional in the presence of a random magnetic field as fol-
lows:

Fl¢]=1 [dr |—b¢*+ —;—¢4+ %¢4+K1V¢]2—2H(r)¢ ,

(2.1)
where b, u, and K are phenomenological positive parame-
ters and the random magnetic field H (r) is assumed to
have Gaussian distribution with a zero mean and vari-
ance given by

(H(r)H(r"))=H?¥(r—r1') . (2.2)

The dynamics are governed by a Langevin equation ap-
propriate for a model with a nonconserved order parame-
ter, i.e.,

8 __L8F,
ar T T

where 7 denotes the time, I' is a kinetic coefficient, and
7(r,7) is a Gaussian noise term satisfying

(n(r,r)n(r', 7)) =2Tkp T8(r,r')8(r—17") .

(2.3)

(2.4)

Here kjy is the Boltzmann constant and T is the tempera-
ture. Equation (2.3) [together with Eq. (2.1)] can be put
in a relatively simpler form:

%it=9(¢—¢3)+v2¢+hﬁ(r>+x/2§(r,t> (2.5)
with

(h(r)h(r'))=8(r—1"), (2.6)

(E(r, )&, 1)) =8(r—1")8(t —1') , 2.7)
and the new variables are

6=b/K, e=2kyzTu/bK, t=TKr,

Y=(u/b)""?¢, and h =(u/b)'*H/K . 2.8)

We point out that € represents the dimensionless temper-
atures and A is the dimensionless field strength. In the
limit 8— oo, Eq. (2.5) directly reduces to the discrete spin
RFIM. The opposite limit, 6—0, is known as the
“displacive limit” in the case of the pure model.?”?® The
phase diagram of this model in the absence of an external
field has ©been studied by various numerical
methods?*2"?° and the critical line joining the discrete Is-
ing and the displacive regimes has been mapped out. The
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critical properties have been found to be in the same
universality class as the discrete Ising model. The none-
quilibrium properties of the discrete and the continuous
models have also been found to be in the same universali-
ty class, which, as stated before, is characterized by the
LAC curvature driven growth. In view of the aforemen-
tioned, we would also expect the growth characteristics
of the continuous and discrete models to be similar in the
presence of the random field.

We have integrated the dynamic equation (2.5), by us-
ing a finite difference scheme for both the spatial and
temporal derivatives. The spatial discretization is
achieved by replacing the continuous space of position
vectors r by a square lattice with 1282 sites and lattice
space 6r =1. We have used a first-order Euler scheme to
integrate Eq. (2.5):

¢<r,t+Az)=¢<r,z>+At%'f- .
For the time step At we have tried several values of con-
vergence and finally chose At =0.02. We have found that
further reductions in At does not affect the measured
quantities appreciably. For example, a reduction of At by
a factor of 2 yields the same domain size as for At =0.02,
considering the statistical errors of the data, which is
about 5%. Since the random external field is static, the
Gaussian random variables /4 are generated at the begin-
ning of each run according to (2.6) and this configuration
of i remains fixed for the duration of the run. The initial
configuration of ¥(7,t) should have the characteristics of
a high-temperature state and is chosen to be a random
uniform distribution in the interval (—1,1). For the final
state of the quench we have chosen (=2, €¢=0.7), a
point well into the ordered region of the zero-field phase
diagram.??"? OQur results are averaged over 100 runs
for each value of the field strength.

We have focused on the following quantities: the pair
correlation function

g (r,)={(YO0,)(r,1)) ,

(2.9)

(2.10

and its Fourier transform, the nonequilibrium structure
factor s(k,t). We have performed circular averages on
both g(r,?) and s(k,?). We will denote the circularly
averaged quantities by G (r,¢) and S (k,t), respectively. A
length scale associated with the average domains size can
be defined in a variety of ways. We have considered the
following lengths. From S (k,t) one can define?2*

R2(1)=S(0,1) (2.11)
and
S k2S(kt) |
RA(1)= "Z—S(W (2.12)
k

Using G (r,t) one can also define’® a length scale R, as
the value of r for which G (r,t) is half its value at the ori-
gin at time ¢, i.e.,

G(R,)=1G(0,1) . (2.13)

We have calculated R, by fitting the four points of G (r,7)
closest to G (0,t)/2 to a cubic polynomial. We have com-
puted all three lengths R,,, R;, and R,. Although all
these measures of domain sizes behave in the same quali-
tative fashion, we have found that the statistical error in
R, is always much less than those in the other two
lengths. In view of this, we will discuss our results here
in terms of R, only. In the rest of this article R (¢) will
stand for R,.

As stated before, our interest here also lies in the scal-
ing behavior. We have calculated the scaling function in
the form

_ S(k,1)
R2(1)

where x =kR (t). We discuss our results in Sec. III.

F(x) , (2.14)

III. RESULTS

We first present our result for the zero-field case. We
have carried out the calculation of R (¢) in this case as a
check on our method against know results. As seen in
Fig. 1, we obtain a clear LAC growth as expected. Fig-
ure 2 shows our results for the zero-field scaling function
in comparison with the prediction of OJK. As can be
seen from Fig. 2, we obtain fairly good scaling and the
scaling curve is rather well described by the OJK theory.

Before we discuss our results for finite-field strengths,
let us briefly restate the various predictions on the none-
quilibrium behavior of the RFIM: in an early-time re-
gime, Grinstein and Fernandez!® have predicted a
logarithm-square time dependence for the average
domain size
2

R(1)~ In%s .

2H (3.1)

Grant and Gunton have also developed an early-time

theory for small-field strengths. They predict'!
R(t)~t'*[1—H% In(t/b)]'"?, 3.2)

where a and b are field-independent constants. At later

0.0

FIG. 1. R(t) vs t'"? in the absence of a random field. The
Lifshitz-Allen-Cahn law is well satisfied.
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In [S(k,t)/R(1)’]

kR(t)

FIG. 2. Zero-field scaling function for different times after
quench. The solid line is the theoretical prediction of Ohta,
Jasnow, and Kawasaki (Ref. 6). The symbols are as follows:
Ot =100, Mz =200, Az =300, 7 =400, and O = 500.

times, Villain® and Grinstein and Fernandez'® have pre-
dicted a logarithmic time dependence

R(t)~—lnt . (3.3)
2

We emphasize that the boundaries between the various
time regimes are expected to shift towards early times as
the field strength is increased. This is evident from the
fact that as A is increased, the retarding effects of the ran-
dom field on the curvature driven growth will start
becoming effective at smaller domain sizes, i.e., at earlier
times.

We now discuss our results for finite fields. In Fig. 3
we show R (t) as a function of Int for h =0.2, 0.4, 0.6,
and 0.8. We obtain a clear logarithmic growth for
h =0.4. We note that although this time regime is not as
clearly visible for A =0.2, it extends down to relatively
early times for A =0.4. Thus, the expected shift of the
boundaries of the time regimes appears to be rather rap-
id. This tendency continues as 4 is increased further. As
can be seen from Fig. 3, the Int region seems to shift to
early times as A is increased from 0.4 to 0.8. For early
times and for small-field strengths our results are con-

R(t)

Int

FIG. 3. R(t) vs. Int for several field strengths. For

= —0.4Int behavior is seen over the whole time range. For
other values of the field strengths, Int behavior is seen over lim-
ited time regimes, as discussed in the text.
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FIG. 4. Scaling function for # =0.4. Deviation from scaling
is seen only at late times and for small values of the scaling vari-
able kR (1).

sistent with both Egs. (3.1) and (3.2) over a limited inter-
val. However, the rather sensitive dependence of the
boundaries of the time regimes on the field strength make
it rather difficult to analyze the field dependence of the
growth and compare with the predictions of in (3.1) and
(3.3). In two dimensions the domains have been predict-
ed to reach only a finite size in equilibrium. Although
the finite duration of our simulations prevents us from
making a definitive analysis of this, one can nevertheless
see some qualitative evidence for this behavior in Fig. 3
as well for field strengths & >0.4.

We now turn to the scaling behavior. In Figs. 4 and 5
we show the scaling function data for A =0.4 and
h =0.8. We have included the zero-field scaling curve in
Fig. 5 for comparison. From Figs. 4 and 5 we can see
that, for the times we have considered and for the range
of wave numbers that were available in our system, the
time dependence of the scaling function is fairly weak, ex-
cept at very small values of the scaling variable for
h =0.8. The scatter in F(x) for small x may be taken as
a signal of the breakdown of scaling. If one defines the
domain size R (¢) in terms of S(0,¢) as in Eq. (2.11), then
by definition the scaling function F(x) would be identi-

© =100
. =200
4 1=300
* =400
0 t=500

Sk,0)/R(t)*

kR(t)

FIG. 5. Scaling function for # =0.8. The solid line is the
scaling function in the absence of the magnetic field which is in-
cluded for comparison. In this case also, deviation from scaling
is seen only at late times and for small values of the scaling vari-
able kR (t), although the deviations are larger than those for
h =0.4. Note that for small values of the scaling variable the
scaling function in the presence of the field lines above that in
the absence of the field.
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cally equal to unity for x =0 (i.e., kK =0) and the scatter
seen at x =0 in Figs. 4 and 5 would disappear. Thus, it
seems clear that the breakdown of scaling seen in this
study is somewhat weaker than that seen in simulation of
kinetic Ising models.?3 Since the Langevin model with a
random field is a “‘soft-spin” version of the RFIM, the oc-
currence of a nonuniversal behavior, such as the break-
down of scaling, may show up at different length scales in
these two models. Much larger lattice sizes will be re-
quired to probe the scaling functions accurately in order
to settle this issue. Further investigations are necessary
to understand other points such as the significance of the
fact that for small values of x the scaling function data lie
increasingly above the zero-field curve as the field
strength is increased.

IV. CONCLUSIONS

We have investigated the domain growth in a continu-
um version of the RFIM with Langevin dynamics. Our

results are consistent with the theories of Villain and
Grinstein and Fernandez and in this respect agree well
with some of the previous simulations on the discrete
RFIM. We have also investigated the scaling behavior of
the structure factor. For the pure model we made a
direct numerical check with the theory of Ohta et al. and
obtained good agreement. For finite-field strengths, we
have obtained some indication of the predicted break-
down and scaling and pointed out the need for further
theoretical and numerical analysis in this respect.
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