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Abstract. We present a simple model that simulates the dynamics of the long flexible 
self-associating polymer chains immersed in water and develop a dynamical scaling descrip- 
tion for the cluster size distribution function for irreversible aggregation. Each chain may 
have one or several functional groups at each end that can associate with one another. 
We find that the chain length is a new scaling variable that appears explicitly in the scaling 
function. The validity of our scaling predictions is confirmed by extensive computer 
simulations. 

Self-associating polymers are flexible macromolecules containing a number of func- 
tional groups (‘sticker sites’) that effectively attract each other. These functional groups 
could be ionic [ 11, so that the interactions between them are electrostatic, or they could 
be hydrophobic [2], in which case the interactions between these sites are mediated 
by the aqueous medium. The effective strong interactions between these sites lead the 
chains to self-associate and form clusters [3]. Due to this mechanism, the rheological 
properties of these polymers in solution are dramatically changed, when compared to 
the ‘pure’ case where the functional groups are absent. Associative thickeners are one 
such class of self-associating polymers. In these systems, the molecules have a long 
hydrophilic chain, readily soluble in water, and contain a number of hydrophobic 
functional groups at each end of the long chains. Due to the presence of functional 
groups at each end of the chain, these molecules are capable of producing networks 
by self-association§, in contrast to the micelle formation [ 51 seen in polymers with 
one functional group end. 

Recently, the associative thickeners are the subject of extensive research, primarily 
due to their potential use as viscosity modifiers in latex paint systems. Theoretical 
studies for the cluster formation in self-associative polymers have been carried out for 
the case of a single functional group end within a mean-field approach [6]. Also, 
association behaviour in the presence of shear flow is available in the literature [7] 
for the chains containing a number of functional groups along the chains. However, 
the dynamics of the cluster formation in these systems has not been considered in the 
above studies. On the other hand, the dynamics of cluster formation in single-particle 
aggregation is the subject of extensive theoretical [S-lo], and experimental [S, 111 
studies in recent years. In the theoretical investigation, one of the major objectives is 

t Present address: Department of Physics, Kansas State University, Manhattan, KS 66506, USA. 
$ Permanent address: Departament de Fisica, Universitat de les Illes Balears, Palma de Mallorca, E-07071, 
Spain. 
I The idea of network formation is supported by the experimental observation that the sample with 
self-associating chains is transparent; see [4]. 
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to study the dynamical scaling behaviour for the number of clusters for irreversible 
aggregation [S-lo]. In contrast to the cluster formation of single particles, which are 
point-like, the self-associative chains, however, do have an intrinsic geometry associated 
with each single-chain conformation. This additional degree of freedom is expected 
to lead to a rather dramatic deviation from the usual cluster size distribution function 
observed in single-particle aggregation [8-111. In view of this, we find it particularly 
interesting to study how the geometry of the flexible chains affects the cluster formation 
of the self-associative polymer chains with several functional groups. Recently, 
Debierre and Turban [ 12, 131 have simulated the chain-chain aggregation process in 
two [ 121 and in three [ 131 dimensions. They start with monomers placed in a lattice 
and study the coagulation between these monomers to form long chains-a model 
relevant to the polymerisation process, but not to the network formation in associative 
thickeners for example, where one considers long chains to start with. Also, in their 
model the chains move rigidly as in the case of cluster-cluster aggregation and the 
flexibility of the long chains are not taken into account. Thus, further studies are 
necessary to investigate the aggregation process in self-associative polymers. 

In this letter we present a scaling formulation of the cluster size distribution in the 
case of irreversible aggregation of long-chain molecules, with one attractive functional 
group at each of the two ends of the chain. The irreversibility of the aggregation is 
relevant in the case when the binding energy is much greater than the thermal energy. 
For different chain lengths, but with a fixed concentration of monomers, we present 
a scaling ansatz for the number of clusters with I chains, at a given time t. We also 
carry out extensive numerical simulations in two dimensions for several different chain 
lengths and find that the results strongly support the scaling hypothesis. 

Our starting point is the observation that the chain length N itself is a scaling 
variable if we study the N dependence in the formation of clusters. But the unit 
segment now is the chain length N and the mass would be discretised with N. Note 
that this discretisation does not occur for other scaling variables such as the number 
of stickers, reaction rate, temperature, and so on. For a moment, we restrict our 
discussion only to two scaling variables: the time t and the chain length N. We will 
later see the consequence of this discretisation in the generalised scaling description 
with many scaling variables. 

In order to avoid the unnecessary discretisation, we define the size of the cluster, 
not by its mass but by the number of chains in the cluster. This way we remove the 
artificial discretisation in the cluster distribution function. Let nr( N, t )  be the number 
of clusters per unit volume with I chains, at a given time t, for a system of NT chains 
with N monomers in each chain. The concentration of the monomers, c, is fixed, i.e., 
NTN is a constant assuming that the volume of the system is fixed. We define (I(  N, t ) )  
as the average number of chains in a cluster at a given time t. When t = 0, there are 
only single clusters, whereas, for t + CO, only one cluster exists. Since for any finite 
time, nr( N, t )  is expected to be a monotonically decreasing function of I, N, and t, we 
propose a time-dependent dynamic scaling form for nr( N, t )  as: 

(1) 

where the exponents a, p and 7 are positive numbers. We also note that the total 
number of clusters in the system, given by 2, nl( N, t) ,  is also a monotonically decreasing 
function of N and t. This quantity is expected to have a scaling form: 

nl( N, t )  = N - a t - p f - T G ( f / ( f (  N, t ) ) )  

C nr( N, t )  = N-"tc6. (2) 
I 
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Thus, one finds that 

valid over time range t<< t x ,  whereas, for t >> t,, ( I (  N. t ) )  -$ NT= N - ' ,  and t ,  defines 
the crossover time between these two functional behaviours. We also find from equation 
(1) that: 

C nl (  N, t )  = N-"tCP d l  lFTG( I/(/( N, t ) ) )  = N-"tCP(I( N, t))'- ' .  (4) 
I I 

Thus, from equations ( 2 )  and (4), we find the following scaling relations: 

W = a - ( U  - 1)(1 -7) 6 = p - 6(  1 - 7). 

Then it is a simple exercise to find that the scaling relation reduces to 

n , ( N  1) = N-'U(N ~ ) ) - * g ( W ( N  t ) ) )  ( 5 )  

where all the time dependency is now through the average cluster size ( l ( N ,  t ) ) .  
Note the appearance of a new factor N-'  in front of the scaling function. The 

novel feature of equation ( 5 )  is the realisation that any scaling variable that results in 
discretisation of mass would survive in the scaling function [ 141. Such scaling variables, 
besides the chain length N, are the size of the monomer and the critical chain length 
in the dipole-dipole aggregation in the presence of a magnetic fieldt. On the other 
hand, scaling variables, such as temperature, reaction rate, or the number of stickers 
on the chain that do not result in discretisation of mass, would be absorbed through 
(Z) and the resulting scaling function would have the same functional form obtained 
previously for the single particle aggregation [ 101. 

In order to test the validity of our new scaling, we have carried out extensive 
numerical simulations on a two-dimensional square lattice of size 300 x 300. We keep 
the concentration of the monomers fixed at 0.2 and consider chains with N = 10, 20, 
30 and 40 monomer units in our study. In order to mimic the aggregation process of 
associative thickener molecules, we identify the two monomers at the two ends of the 
chains as the functional groups or sticker sites, and two chains can associate only 
when a sticker site of one chain is a nearest neighbour of a sticker site of the other 
chain during the aggregation process. Since the long-chain part of the associative 
thickener molecule is readily soluble in water, we consider the chains as self-avoiding 
walks which model polymers in good solvents quite accurately. As an initial configur- 
ation, we randomly place N T ( N )  chains of size N as self-avoiding walks of length 
N - 1 on the lattice. All the chains in the simulation are constructed to obey the 
excluded volume criterion, so that a lattice site cannot be occupied by more than one 
chain at any given instant of time. Thus, at t = 0, we have only single chain clusters. 
We mimic the dynamics of the flexible chains by reptation and by wiggling. During 
the time evolution, a chain is chosen randomly. Then, a reptation move towards one 
of the two directions along the chain, also chosen at random, is tried on that chain. 
In this move a vacant nearest-neighbour site of the first monomer (along the reptation 

t If we start from the similar scaling ansatz for the mass distribution function, n,( N ,  f )  = N-"fTBs-'F( s/S( I)) 
with S( r )  = N"f6,  where s is the number of monomers in a cluster of I chains, then scaling with the mass 
conservation produces a scaling, n,(N,  1)  = s - 2 G ( s / S ( t ) ) ,  which is compatible with equation ( 5 ) ,  when we 
identify n,( N,  f )  = n,( N ,  f )  d s / d l =  Nn,( N,  I ) .  
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direction) moves all the way back to the end of the chain and the chain moves one 
step. A reptation step is accepted if the excluded volume criterion is satisfied, otherwise 
it is rejected. After the reptation trial, a wiggling move is tried on the same chain. In 
this process, a monomer is chosen randomly from the chain, and the details of the 
dynamics depend on whether this monomer is at any end of the chain or not. If this 
monomer is at the end of the chain, then a move is attempted to a randomly chosen 
nearest-neighbour site of its immediate neighbour along the chain, and the move is 
accepted if it complies with the excluded criterion. On the other hand, if the chosen 
monomer is not at an end of the chain, then the chain dynamics is simulated by using 
the Verdier-Stockmeyer algorithm [ 151. If the location of this monomer is r, ,  the new 
trial position r :  is given by: 

r:  = r , , ,  - r, + r l - ,  

where r j + ,  and r , _  , are the locations of the ( i  + 1)th and ( i  - 1)th monomers respectively. 
The trial position r:  is accepted only if it is not already occupied by any other chain 
molecule. One should note that the chain motion depends on the local conformation 
of the chosen monomer. In the simulation one time step is counted as one reptation 
trial plus one wiggling trial. In order to avoid the complexity arising from the chain 
aggregation process, we have employed an ideal version of the chain aggregation 
process based on a model for the single-particle aggregation [ 161. In our model, which 
we call a chain coalescence model, the clusters are also defined to be chains with the 
same number of monomers as in the original chains. When two original chains happen 
to have any of their sticker sites as nearest neighbours, these two chains coalesce into 
a heavier single chain, which is counted as a cluster containing two chains. The 
configuration of this heavier chain is chosen randomly as the configuration of one of 
the two original chains. The dynamics of this heavier chain is simulated in the same 
way as the original chains. The process continues and clusters containing more and 
more chains appear in the system. We computed the cluster distribution function 
nr( N, t )  at every 50 000 time steps for time up to t = 500 000 and averaged the results 
over 10 different initial configurations for each value of N. 

In figure 1 we plot our results for ( l ( N ,  t ) )  multiplied by NO4 against t. It seems 
clear that the data collapses on a single master curve for t up to 400000 supporting 

0 N =10 
* N = 2 0  

0 1 2 3 4 5 6 xlO5 
t 

Figure 1. Plot of ( / ( N .  1 ) )  multiplied by NO4 against t for several N values. The straight 
line is the best fit to the data. 
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the scaling predictions over a broad time range. Also, we estimate the values of the 
scaling exponents w and z, defined in equation ( 2 )  as w = 0.6 *0.2 and S = l.OkO.2, 
as shown in figure 1. This linear growth of the average number of chains in a cluster 
coincides with the prediction of the Smoluchowski equations [17]: if K is the constant 
aggregation rate in these kinetic equations, then the exact solution predicts ( I (  N,  t ) )  = 
Kt. This seems to imply that the mean-field description given by the Smoluchowski 
equation is a good representation of our data and that, for this system, d = 2 is above 
(or equal to) the upper critical dimension. A new feature here is the dependence on 
N of the kinetic coefficient K as K = N u - ' .  The decreasing of the kinetic rate with 
N can be understood by noting that as N increases, it is more difficult for the stickers 
of different chains to meet with each other. Thus the slowing down with increasing 
chain length may be attributed to the reduced diffusion constant of the longer chains. 
The rate is also affected by the diffusive capture radius, which grows with molecular 
weight for flexible chains. 

In order to study the new scaling hypothesis presented in equation ( 5 ) ,  we plot 
nl( N, t )  multiplied by N times ( I (  N,  t ) ) 2  against I / (  I (  N,  t ) )  in figure 2 for several values 
of N and t. We find that all the data fall on a single curve suggesting that the new 
scaling prediction is well satisfied over the time range and values of N considered in 
the simulation. The data support an exponential decay for the scaling function which 
is again in agreement with the predictions of mean-field theory. 

r 

+ N n l O  f = 5 x 1 0 4  
r t ~ = i o  t =  z X 1 o 5  
x N = Z O  f=1 .sx105 
o N - 2 0  f 3 i o 5  

0 0.5 1.0 1.5 -2.0 - 1.5 -1.0 - 0.5 

I n [ / ( N , f l / ( l ( N , f ) ) l  

Figure 2. Scaling plot of n , ( N ,  t ) N ( I ( N ,  f ) ) 2  against //(/(Pi, I ) ) .  The error bars are calcu- 
lated from results for ten different random initial configurations for each value of N .  

In summary, we have presented a scaling hypothesis for aggregation of long-chain 
molecules with sticker sites at both ends. We have demonstrated that any scaling 
variables that result in mass discretisation survive in the scaling function. We have 
carried out extensive numerical simulations to test the validity of these scaling ideas. 
Although the model considered by us in the numerical simulations contains some 
simplifying features and the simulations are carried out only in two dimensions due 
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to the limitations on the available computer time, the scaling form presented in this 
paper is expected to hold for any dimension. It would also be interesting to determine 
whether d = 2 is indeed the critical dimension (as in the case of single-particle aggrega- 
tion) and what kind of correction one should expect to the scaling function and to the 
asymptotic growth law for the average number of chains in a cluster. These scaling 
ideas can be tested by light-scattering experiments on an aqueous solution of the 
associative thickener systems. 
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