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We present the first numerical study of the nonlinear stochastic differential equation character-
izing interface growth, originally proposed by Kardar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889

(1986)1.

Our studies are carried out in two dimensions which would correspond to three-

dimensional studies of microscopic models such as the Eden or ballistic-deposition models. We
find that the interface width satisfies the proposed scaling relations. The exponents associated
with this scaling relation are calculated for different strengths of the effective coupling in the
model and seem to be different from previous calculations on microscopic models.

The dynamical behavior associated with various
different types of growth processes has received consider-
able attention in recent years.! One class of growth prob-
lems, which we study in this paper, includes the Eden? and
the ballistic-deposition models3 both of which produce
compact clusters with a rough interface. Despite their
simple appearance, the details of the growth processes of
these models are not completely understood. It is realized,
though, that the growth process occurs mainly at an “ac-
tive zone™ on the surface and that the width or thickness
of the rough interface shows interesting scaling behav-
jor.#> Additional interest in the scaling behavior of the
interface width developed when Kardar, Parisi, and
Zhang® proposed a nonlinear stochastic differential equa-
tion (hereafter referred to as the KPZ equation) which is
supposed to govern the growth of profiles for the second
class of processes mentioned above. It was also realized
by these authors that the KPZ equation is related to other
physical problems such as randomly stirred fluids
(Burger’s equation’) and directed polymers in a random
media.® Hence the KPZ equation received added atten-
tion, since the solutions of one problem can be directly
used to elucidate the other problems as well.

Since the scaling exponents for the interface width cal-
culated from recent three-dimensional (d=3) simula-
tions® ™12 of microscopic models (Eden, etc.) neither agree
with each other nor with studies of the KPZ equation®!3
(or with the equivalent directed polymer problem®'4), we
try to clarify the issue by carrying out a novel numerical
study. In this paper, we present the results of a detailed
numerical study of the KPZ equation on a square lattice
(which being a model for the interface profile would cor-
respond to the three-dimensional microscopic models, i.e.,
d=3). It turns out that the numerical solution of the
KPZ equation is computationally very demanding since a
large number of runs is necessary in order to extract sta-
tistically reliable information. However, we have been
able to carry out the simulations to a reasonably good pre-
cision for several values of the sample size and the
effective coupling in the model. We find that the interface
width satisfies scaling relations.* ~%!> The exponents as-
sociated with this scaling relation are calculated for
different strengths of the effective coupling and seem to be
different from previous calculations on microscopic mod-
els.
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The KPZ equation for the interface profile is written in
terms of a time-dependent coarse-grained height variable
h(r,7) as

O i+ A Wi +g, 1)
o7 2
where v and A are constants, 7 is the time, and the noise n
is a Gaussian distributed stochastic variable of mean
{n(r,7)) =0 and correlations

{(n(r,)n(,7'))=2D6(x—r1")5(z— 1) . )

The vectors r define the (d — 1)-dimensional space of the
“substrate.”” Equation (1), then, corresponds to growth
processes in d spatial dimensions. The addition of the
nonlinear term (VA)? to the surface tension term V24 dis-
tinguishes the KPZ equation from similar equations previ-
ously studied by Edwards and Wilkinson.!> The nonlinear
term is expected to be present in all situations allowing la-
teral growth. The asymptotic behavior of the interface
width w(L,7) for a substrate of linear size L is found to
obey the scaling relation

w=L*f(t/L?), 3)
where the exponents y and z are related by '3
xtz=2. @)

Equation (3) leads to two interesting limits: if L— oo,
then for finite but sufficiently large 7, w(z) = t¥*=1"; for
finite L and t— oo, the equilibrium values of the interface
width satisfy w®(L)=L* 1In two spatial dimensions
(d=2) the exponents found by Kardar, Parisi, and
Zhang® from a perturbation expansion are actually exact
and are given by y= L andz=1% (e, f=7%). In three
dimensions (d=3) the effective coupling X =A2D/v? is
marginally relevant and the situation is not clear. The
strong coupling behavior in three dimensions is probed by
Kardar and Zhang® by mapping the problem of growth to
a problem of directed polymers. Numerical simulations of
the latter model at a temperature 7=0 (which corre-
sponds to A— oo from the mapping) are claimed to be
consistent with =% and thus a conjecture of su-
peruniversality of the exponents was suggested. Subse-
quently, the superuniversal conjecture was supported 16 py
an analytic argument based on replica methods. In higher

11419 © 1989 The American Physical Society



RAPID COMMUNICATIONS

11420

dimensions both trivial values (y =0, z =2 corresponding
to asymptotically smooth surfaces) and nontrivial values
(x>0, z <2) of the exponents are possible'? depending
on the relative strengths of the surface tension and non-
linear terms.

Much effort has been devoted to the determination of
the exponents y and z from simulations of microscopic
models. The values of the exponents in two dimensions
are generally accepted to be*>%!'"71% y=L apnd z=1%.
On the other hand, the situation in higher dimensions is
not clear at all. The simulations of Zabolitzky and
Stauffer!® on the Eden model do not provide a reliable es-
timate for the growth exponents in three dimensions. The
simulations of Meakin and co-workers®!? suggest y = +.
On the other hand, Wolf and Kertesz!' conjectured
x=1/d G.e., B=1* in three dimensions) and Kim and
Kosterlitz'? claimed that 8=1/(d+1) on the basis of
their investigation on the Eden model and the restricted
solid-on-solid model, respectively.

We start by writing the KPZ equation [Eq. (1)] in a
simpler form by defining rescaled variables A =h/(2v/A)
and ¢t =vr. The resulting equation is

o =Y h+(Vh)2+Vet, )
which contains only one parameter?® ¢=A2D/2v? (which
is essentially the effective coupling parameter ) and the
new noise term &(r,¢) satisfies

E@EM, ")) =5(—1")8@—1). (6)

We have studied Eq. (5) on a square lattice of side L with
periodic boundary conditions for system sides 16=L
=128 and for £=1, 2, 5, and 10. We have performed the
numerical integrations by using a simple Euler scheme.
We have chosen the mesh size for the spatial derivatives to
be Ar=1 always, and time steps 6t =0.01 for e=1 and
e=2, 5t =0.001 for =5, and &¢ =0.0001 for e=10. We
have checked that smaller values of ¢ do not change the
values of the measured quantities by any appreciable
amount. For example, even after reducing &z by a factor
of 2 from the above mentioned values the width is still
found to be within the statistical error bars [which is
about (1-2)%]. We always start from a smooth interface
as the initial configuration [i.e., A (r,0) =0 everywhere]
and measure width as

w(L,t) =[Kh(r,1)? —(h(r,t))?]12.

The measurements are then averaged over 500 realiza-
tions of the noise term (when £=10, however, we have
averaged only over 100 realizations due to the very small
time step needed for convergence)..

In Figs. 1 and 2 we show two typical plots for the width
w(L,t) vs t for two different values of ¢ and different L
values. When ¢ is small systems with small L reach equi-
librium quickly and one needs to consider large system
sizes to find the exponent B directly from a logarithmic
plot. In the above figures it is shown that the data for two
different L values agree with each other reasonably well,
indicating that the finite-size effects are negligible for
these system sizes. Nevertheless, we calculate the ex-
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FIG. 1. Log-log plot of width w(L,t) vs t for e=2. The sym-
bols correspond to different values of L as follows: O for L =64
and m for L=128. After an initial transient time, the width
varies as a power law of time. The slope of the straight line then
yields B=0.10(2). Here, and in other figures, the statistical er-
rors are smaller than the symbol sizes.
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ponent B for different &’s from the slope of the log-log plot
of the width for the largest value of L considered in each
case. We find that the exponent values as calculated are
B=0.09(2) for =1, p=0.10(2) for e=2, B=0.11(2) for
£=5, and $=0.15(3) for e=10. Also, in order to check
the relationship y+z =2, we ran the systems to equilibri-
um in the case of é=2. The resulting equilibrium widths
are plotted in Fig. 3 in a log-log plot. The slope of the
curve yields y=0.18(1) which together with B=y/z
=().10(2) satisfies Eq. (4) in this case within the statisti-
cal errors. We note that for e=10, the value of B is slight-
ly larger than those found for smaller &’s. Since our nu-
merical accuracy is comparably smaller for £=10 (in this
case we could make only 100 runs compared to 500 runs
made for smaller &’s, due to the very small 8¢ required for
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FIG. 2. Log-log plot of width w(L,t) vs ¢ for é=10 and

L=32 (0) and L =64 (m). The slope of the straight line yields
B=0.15(3).
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FIG. 3. Log-log plot of the equilibrium width w®(L) vs L for
&£=2. The slope of the straight line yields y =0.18(1).

accurate numerical integration), we tend to believe that
this discrepancy will go away with better statistical accu-
racy. Also, the independent direct measure of y from the
equilibrium values of the width for ¢=2 provides added
weight that 8= 0.1.

Although, the relationship between the KPZ model and
the microscopic models has not yet been rigorously estab-
lished, it is generally accepted that these models are inti-
mately related and probably belong to the same universal-
ity class. The exponent B calculated in our study is clearly
different from the superuniversality conjecture® and from
the results of several other analytical studies.'* The B
values are also different from those obtained in simula-
tions of the Eden and the restricted solid-on-solid models.
However, we refrain from making any quick comment
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about the true value of B and the corresponding relations
between the microscopic and the coarse-grained models
for several reasons. The calculation of B in our simula-
tion, as well as in the Eden and other models, are carried
out from a log-log plot covering not too large time interval
and one cannot rule out the possibility that all these stud-
ies may be providing just different *“‘effective” values for
the exponent 8. We also note that the parameter ¢ is mar-
ginally relevant® in d=3 and the crossover from the
smooth interface behavior to the rough interface behavior
is probably very slow for small values of £&. Thus for small
values of & the transient time is very large and the ex-
ponents calculated from the log-log plot could be different

~ from the “true” values. Finally, £ being a marginally

relevant variable in three dimensions, the scaling relations
might contain some strong correction terms associated
with them which, although not easy to detect numerically,
could easily produce systematic errors in the calculation
of the scaling exponents. This could also explain the
dispersity in the values of the exponents found in different
numerical studies. Whether our results have been affected
by all these effects remains to be seen, since we could not
carry out simulations for larger values of L, ¢, and €&'s due
to limitations of computer times (the present study used
more than 200 hours of central processing unit time in a
Cray YMP).
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