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A B S T R A C T

We investigate the effects of aging in the noisy voter model considering that the probability to change
states decays algebraically with age 𝜏, defined as the time elapsed since adopting the current state. We
study the complete aging scenario, which incorporates aging to both mechanisms of interaction, herding
and idiosyncratic behavior, and compare it with the partial aging case, where aging affects only the
herding mechanism. Analytical mean-field equations are derived, finding excellent agreement with agent-based
simulations on a complete graph. We observe that complete aging enhances consensus formation, shifting the
critical point to higher values compared to the partial aging case. However, when the aging probability decays
asymptotically to zero for large 𝜏, a steady state is not always attained for complete aging.
1. Introduction

The dynamics of opinion formation in social systems is a rich and
complex subject, where various mechanisms influence how individuals
update their beliefs and how these updates aggregate to form collective
behaviors. The tools of statistical physics offer valuable insight into
this phenomenon, providing a natural framework for analyzing com-
plex systems with many interacting components [1–4]. The dynamics
of opinion formation can then be studied using concepts like phase
transitions, criticality, and symmetry breaking [5].

In many social models, individuals are assumed to update their
opinions by imitating others in their social network. However, this
imitation process is often imperfect, and the interplay of noise, arising
from factors such as independent choices or stochastic perturbations,
can profoundly affect the system’s collective behavior. Hence, one
fundamental aspect of the opinion formation process is the competition
between the drive toward uniformity (understood as consensus in this
context), which arises from social contagion and influence, and the
inherent diversity introduced by individual noise or random factors.

While traditional models of opinion dynamics, such as the voter
model [6–9], focus on deterministic rules of imitation, the incorpo-
ration of noise introduces stochasticity into the system, leading to a
variety of possible outcomes. These noisy dynamics can result in the
persistence of diversity in a population or, conversely, can promote the
emergence of consensus depending on the strength of social influence
and the level of randomness. Several noisy opinion dynamics models

∗ Corresponding author.
E-mail addresses: jaumellabres@ifisc.uib-csic.es (J. Llabrés), saraoliver@ifisc.uib-csic.es (S. Oliver-Bonafoux), celia.fis@puc-rio.br (C. Anteneodo),

raul@ifisc.uib-csic.es (R. Toral).

have been developed to capture this phenomenon, including the noisy
voter model [10–14], the noisy threshold voter model [15,16], and
noisy kinetic-exchange models [17,18]. In these models, the social
influence rule is typically modified to include a probabilistic element,
such that with a probability 1 − 𝑎, individuals update their opinion by
following the majority, while with probability 𝑎, individuals change
their opinion independently of others, introducing a ‘‘social temper-
ature’’ in the form of random noise. The parameter 𝑎 controls the
strength of this randomness and therefore the system’s capacity to
reach consensus. When 𝑎 is small, the system is more likely to exhibit
coherent behavior and reach a state of collective order, while larger
values of 𝑎 hinder consensus formation, making it more difficult for
the system to settle into a common majority opinion.

In addition to the noisy dynamics of opinion formation, recent
studies have highlighted the importance of non-Markovian effects that
extend the traditional assumptions of the voter model. One such effect
is ‘‘latency time’’, where agents remain inactive for a period after
changing their opinion, effectively introducing a delay in their ability
to engage in further social interactions. This delay can be thought of
as a memory effect, where past interactions influence future behavior,
even in the absence of immediate social influence. Palermo et al. [19]
have explored this phenomenon, showing that latency can significantly
alter the dynamics of opinion formation, slowing down the process of
consensus or fostering persistent disagreement in the system. Another
key non-Markovian effect is ‘‘persistence’’, where agents, after adopting
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a particular opinion, become ‘‘transient zealots’’ [20,21]. These agents
xhibit a strong attachment to their opinion, resisting social influence

and thereby breaking the symmetry of the opinion dynamics. This
persistence can act as a stabilizing mechanism for a minority opinion,
preventing it from being absorbed into the majority, and can also delay
r prevent the system from reaching consensus.

Another non-Markovian effect that influences the dynamics of opin-
on formation is that of ‘‘aging’’, which refers to the tendency of indi-
iduals to become less susceptible to changing their opinions the longer
hey hold a particular belief. Initially introduced as ‘‘inertia’’ [22],

aging has been shown to slow down the dynamics of opinion change,
potentially affecting both the time to reach consensus and the final state
of the system. Interestingly, while aging typically acts as a stabilizing
factor in the system, recent studies have demonstrated that the slowing
down of microscopic dynamics induced by aging can paradoxically
speed up the time needed for the system to reach a macroscopically
ordered consensus [22]. This counterintuitive result suggests that the
dynamics of opinion formation are not solely governed by the local
nteractions between agents, but also by the underlying time-dependent
roperties of the system, which can shift the system’s behavior in
ontrivial ways.

In its simplest form, aging extends the standard voter model by
introducing time-dependent transition rates that depend on the dura-
tion an agent has spent in a given opinion state. In particular, it is
considered that the transition rates for flipping opinions monotonously
decay as an agent spends more time in a particular opinion state. This
aging effect reduces the probability of switching opinions over time,
reflecting the increased resistance to change that naturally arises in
social systems as individuals become more rooted in their beliefs.

While previous studies [23,24] including our own work [25], have
explored the case where aging only affects social contagion, a situation
that we denote here by ‘‘partial aging’’, we now turn our attention
o the more general scenario of ‘‘complete aging’’, where aging is

applied not only to the social contagion mechanism (the imitation
of neighbors’ opinions) but also to the random, noisy component of
the opinion dynamics. This extension allows us to explore how the
influence of aging on both social contagion and independent opinion
change affects the system’s behavior. Specifically, we seek to compare
the effects of partial and complete aging on the noisy voter model,
examining whether the different aging schemes lead to qualitatively
different behaviors in terms of consensus formation, the time to reach
equilibrium, and the stability of minority opinions. By comparing these
different aging scenarios within the framework of the noisy voter
model, we can identify the critical factors that determine whether
a social system will evolve toward consensus or remain in a state
of persistent disagreement, shedding light on the role of individual
resistance to opinion change in complex social systems.

The structure of the paper is organized as follows: In Section 2,
we describe the updating rules governing the stochastic process. In
Section 3, a mean-field description of the system under an adiabatic
approximation is provided and the particular form of aging considered
is specified. The main results of our research are presented in Section 4,
which is divided into two blocks. In Section 4.1, a comparative study
between partial and complete aging is performed with analytical results
supported by numerical simulations on complete graphs. A particular
case is explored in Section 4.2, where the adiabatic approximation
reaks down, revealing a distinct dynamical regime. Finally, concluding
emarks and perspectives for future research are discussed in Section 5.

The appendices contain the more technical details of the calculations
and some additional figures.

2. The model: noisy voter with aging

Consider a set of 𝑁 agents, each of them holding a binary state
ariable 𝑠𝑖 ∈ {−1,+1}, 𝑖 = 1,… , 𝑁 , representing the position of agent
against or in favor of the topic under discussion. Agents can change
2

a

their state due to either social influence – by a non-reciprocal pairwise
interaction of simple contagion – or randomly, otherwise known as
idiosyncratic changes. In addition, each agent 𝑖 holds an internal age
variable 𝜏𝑖 = 0, 1, 2,… , representing the number of consecutive failed
attempts to change.

Let us describe explicitly the evolution rules of the model. Initially,
ach state variable 𝑠𝑖 takes a random value and all internal times 𝜏𝑖 are
et to zero. Then,

1. An agent 𝑖 is randomly selected.
2. With probability (1 − 𝑎), the social rule is chosen and activated

with probability 𝑞(𝜏𝑖). In that case, agent 𝑖 copies the state of a
randomly chosen neighbor 𝑗, 𝑠𝑖 → 𝑠𝑗 .

3. Otherwise, with probability 𝑎, the idiosyncratic rule is chosen
and activated with probability 𝑞(𝜏𝑖). If this happens, the state 𝑠𝑖
randomly takes one of the two possible values.

4. Regardless of the update mechanism used by agent 𝑖, its internal
age is updated as follows: If the state 𝑠𝑖 changes, the age is reset
to 0, i.e., 𝜏𝑖 → 0. Otherwise, the age is incremented by one unit,
i.e., 𝜏𝑖 → 𝜏𝑖 + 1.

Time is measured in Monte Carlo steps (MCS), so that one unit of
time corresponds to 𝑁 repetitions of this process. Thus, on average,
each agent is selected once per MCS.

The functions 𝑞(𝜏) and 𝑞(𝜏) represent the resistance of individuals
o accept the changes arising from herding or idiosyncratic behavior,

respectively, as a function of their age 𝜏. From this point on, we adopt
the notation 𝑞𝜏 ≡ 𝑞(𝜏) and 𝑞𝜏 ≡ 𝑞(𝜏) for simplicity.

In the next section, we present a mean-field description of the noisy
voter model for generic forms of the aging kernels 𝑞𝜏 and 𝑞𝜏 .

3. Mean-field description

We consider the mean-field scenario, or all-to-all coupling, where
every individual is a neighbor of any other individual. Let us denote
y 𝑥+𝜏 the fraction of agents in state +1 and age 𝜏, and by 𝑥 =

∑∞
𝜏=0 𝑥

+
𝜏

he corresponding global fraction. As detailed in Appendix A, it is
possible to obtain rate equations providing the dynamical evolution of
𝑥+𝜏 (𝑡) and 𝑥+(𝑡). Under the assumption that the microscopic variables 𝑥+𝜏
uickly reach the steady state and can be adiabatically eliminated, one

obtains the following closed evolution equation for the global variable 𝑥
see Appendix A for details)
𝑑 𝑥
𝑑 𝑡 = 𝐺(𝑥) =𝑎

2
[

(1 − 𝑥)𝛷̃(𝑥) − 𝑥𝛷̃(1 − 𝑥)
]

+

+ (1 − 𝑎)𝑥(1 − 𝑥) [𝛷(𝑥) −𝛷(1 − 𝑥)] , (1)

where the functions 𝛷(𝑥), 𝛷̃(𝑥) are given by

𝛷(𝑥) =
∑∞

𝜏=0 𝑞𝜏𝐹𝜏 (𝑥)
∑∞

𝜏=0 𝐹𝜏 (𝑥)
, 𝛷̃(𝑥) =

∑∞
𝜏=0 𝑞𝜏𝐹𝜏 (𝑥)
∑∞

𝜏=0 𝐹𝜏 (𝑥)
, (2)

with

𝐹0(𝑥) = 1, 𝐹𝜏 (𝑥) ≡
𝜏−1
∏

𝑘=0
𝛬(𝑞𝑘 𝑥, 𝑞𝑘, 𝑎), 𝜏 ≥ 1, (3)

and

𝛬(𝑧, 𝑞 , 𝑎) = 𝑎
(

1 − 𝑞
2

)

+ (1 − 𝑎)(1 − 𝑧). (4)

The steady-state solutions, 𝑥st, are found by setting 𝐺(𝑥) = 0 in
q. (1). From the structure of Eq. (1), it is clear that 𝑥st = 1∕2 is
 fixed point of this dynamical system. This solution corresponds to

the scenario in which the population is evenly split, with exactly half
holding each of the two opinions. This corresponds to a polarized
society or, from the viewpoint of statistical physics, a disordered state.
Moreover, the invariance of Eq. (1) under the transformation 𝑥 → 1 −𝑥
implies that any additional solutions must occur in symmetric pairs, 𝑥st
nd 1 −𝑥 . Hence, we consider, without loss of generality, 1∕2 ≤ 𝑥 ≤ 1.
st st
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The stability of these fixed points is determined by the sign of the
derivative of 𝐺(𝑥) evaluated at each solution, i.e., 𝑑 𝐺(𝑥)∕𝑑 𝑥|𝑥=𝑥st .

As long as 𝑥st > 1∕2, the +1 opinion will be held by a majority of
the population, a situation that is recognized as consensus or order. Our
primary interest lies in identifying non-trivial steady-state solutions of
Eq. (1) and investigating the transitions between these solutions and
he disordered one that arise as the model parameters are varied.

By setting 𝑞𝜏 = 𝑞𝜏 = 1, which implies 𝛷̃(𝑥) = 𝛷(𝑥) = 1, Eq. (1)
ecomes the rate equation of the noisy voter model without aging [10].

In this case, 𝑥st = 1∕2 is the only fixed point, which is stable and no
transitions are possible.

When considering aging effects, several functional forms for the
activation probability have been explored in the literature. In this work,

e adopt a rational function of the age

𝑞𝜏 =
𝑞∞𝜏 + 𝑞0𝜏∗

𝜏 + 𝜏∗
, (5)

where 𝑞0, 𝑞∞ ∈ [0, 1] denote the initial and asymptotic (𝜏 → ∞) values
f the function, respectively, and 𝜏∗ > 0 characterizes the rate of change
f the aging kernel, such that the larger 𝜏∗, the slower the function 𝑞𝜏 .
f 𝑞∞ < 𝑞0, the function 𝑞𝜏 decreases with age, a behavior commonly
eferred to as aging. On the other hand, if 𝑞∞ > 𝑞0, the function 𝑞𝜏
ncreases with age, a phenomenon known as ‘‘anti-aging’’ [26]. This
atter case lies beyond the scope of this paper and we focus exclusively

on the aging scenario.
Most of the works in the literature that have considered this func-

tional form of aging have fixed the values of the parameters to 𝑞∞ = 0,
𝑞0 = 1∕2 and 𝜏∗ = 2 [23,27–29]. Others have considered 𝑞∞ = 0,
0 = 1, and general values of 𝜏∗ [24,25]. A detailed study in terms of
ll parameters is performed in the case of the (noise-less) voter model

in Ref. [26].
In this work, we make two primary contributions. First, we extend

he analysis of the noisy voter model with partial aging presented in
ef. [25] by incorporating the dependence on the asymptotic value 𝑞∞

using the following scheme

𝑞𝜏 =
𝑞∞𝜏 + 𝜏∗

𝜏 + 𝜏∗
,

𝑞𝜏 = 1.
(6)

Second, we explore the complete aging scenario, in which we also
nclude aging effects in the idiosyncratic behavior, assuming that the
ame aging profile governs both mechanisms, namely

𝑞𝜏 = 𝑞𝜏 =
𝑞∞𝜏 + 𝜏∗

𝜏 + 𝜏∗
. (7)

In both cases, we have set 𝑞0 = 1, while 𝑞∞ ∈ [0, 1]. This assumption
s made without loss of generality, as a different value for 𝑞0 can be
eabsorbed in a global time scale factor, which is irrelevant for the
tudy of the steady-state solutions.

The scenario in which aging affects only the idiosyncratic mecha-
nism is not considered here, as it simply reproduces the phenomenology
of the noisy voter model without aging: the disordered state is the only
solution and no phase transition is possible.

4. Results

In this section, we present analytical results for the noisy voter
odel with both partial and complete aging, complemented by numer-

cal simulations on complete graphs. The section is organized into two
parts.

The first part focuses on comparing the partial and complete aging
cenarios for 𝑞∞ > 0. We conduct a standard stability analysis of the

fixed points, examine the phase transition between coexistence and
onsensus states, and analyze the agents’ age distribution.

The second part explores the special case 𝑞∞ = 0. While the partial
ging scenario shows no significant deviations from the 𝑞∞ > 0 case,
he complete aging scenario presents a unique phenomenology which
equires a more detailed investigation. This analysis is complicated
y mathematical difficulties related to the convergence of the series

2).
3

ppearing in Eqs. ( i
Fig. 1. Stationary magnetization, 𝑚st, versus the noise intensity, 𝑎, for two values of
∞ and for (a) 𝜏∗ = 2 and (b) 𝜏∗ = 10. Solid lines correspond to the numerical solution
f the stationary form of Eq. (1), while symbols represent the results of numerical
imulations of the agent-based model described in Section 2. In the simulations we
ave considered a population of 𝑁 = 104 agents, and averaged the magnetization over

106 MCS after a transient of 106 MCS.

4.1. Comparison of partial and complete aging for 𝑞∞ > 0

For both types of aging, partial and complete, a second order phase
ransition from an ordered to a disordered state occurs at a critical

value of the noise intensity, denoted as 𝑎c. For 𝑎 < 𝑎c, Eq. (1) has a pair
of stable symmetric solutions 𝑥st, 1 − 𝑥st, while the disordered solution
𝑥st = 1∕2 is unstable. Although it is not possible to obtain an explicit
expression for these nontrivial solutions, they can be determined nu-
merically with high accuracy. For 𝑎 > 𝑎c, on the other hand, only the
solution 𝑥st = 1∕2 exists and it is stable.

In Fig. 1, we plot the stationary magnetization, 𝑚st = |2𝑥st − 1|, as
 function of the noise intensity, 𝑎, for different values of 𝜏∗ and
∞. In the figure we include, in addition to the analytical results,
he outcomes of numerical simulations with 𝑁 = 104 agents. The
trong agreement between the simulations and the analytical results
upports the validity of the adiabatic approximation introduced in the
heoretical treatment. However, some discrepancies are observed for

noise intensity values close to the critical point 𝑎c. These discrepancies
rise from the finite number of agents considered in the numerical
imulations, which contrasts with the thermodynamic limit 𝑁 → ∞

assumed in the theoretical framework. The figure shows that the main
effect of complete aging is to increase the consensus region by shifting
the critical point 𝑎c to higher values. Furthermore, the case of complete
aging is more sensitive to the asymptotic level 𝑞∞, as can be observed
for both values of 𝜏∗ displayed in the figure.

Unfortunately, it is not possible to obtain an analytical expression
or the critical point 𝑎c. However, it can be determined numerically by
dentifying the point at which the trivial solution 𝑥 = 1∕2 changes its
st
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Fig. 2. Heat map of the critical value 𝑎c in the parameter space (𝑞∞ , 𝜏∗), in the case
of (a) partial aging and (b) complete aging. The results are derived from the numerical
solution of Eqs. (8) and (9), respectively.

stability. This is achieved by solving the equation 𝑑 𝐺(𝑥)∕𝑑 𝑥|𝑥=1∕2 = 0,
which leads to the relation [25]

(1 − 𝑎c)𝛷′(𝑥)|𝑥=1∕2 = 2𝑎c, (8)

in the partial aging case, and to the relation

𝛷′(𝑥)|𝑥=1∕2 = 2𝑎c𝛷(𝑥)|𝑥=1∕2, (9)

in the complete aging case. Note that in both Eqs. (8) and (9), the func-
tion 𝛷(𝑥) also depends on the critical value 𝑎c. By numerically solving
these equations, we can plot the critical value 𝑎c in the parameter space
(𝑞∞, 𝜏∗) for both partial and complete aging, as shown in Fig. 2. Note
that in this figure brighter regions indicate higher values of 𝑎c, and
that the vertical 𝑎c scales vary significantly in the cases of partial and
complete aging. For any combination of 𝑞∞ and 𝜏∗ values, complete
aging yields a higher critical point 𝑎c than partial aging, illustrating
that complete aging enhances consensus among the population. While
the maximum values of 𝑎c are slightly higher than 0.2 for partial
aging, with complete aging we reach critical point values near 0.8. The
maximum values of 𝑎c occur for 𝜏∗ ∼ 1 and 𝑞∞ ≲ 10−1 in the case of
partial aging, and for 𝜏∗ ∼ 1 and 𝑞∞ → 0 in the case of complete aging.
More generally, in the complete aging scenario, for any value of 𝜏∗ the
maximum value of 𝑎c is achieved in the limit 𝑞∞ → 0. Finally, note
that a lack of order, signaled by the vanishing of the critical value 𝑎c,
emerges in the limits of 𝑞∞ → 1 and 𝜏∗ → ∞ due to the approach to
the aging-less case in these limits. No qualitative changes are observed
when smaller values of the 𝑞∞ and 𝜏∗ parameters are considered. In
Fig. 3, we show horizontal (𝑎c vs 𝑞∞) and vertical (𝑎c vs 𝜏∗) slices of
the heat maps presented in Fig. 2.

In Fig. 4, we plot the average age of the agents in each state, namely,

⟨𝜏±⟩ = 1
±

∑

𝜏 𝑥±𝜏 , (10)
4

𝑥 𝜏
Fig. 3. For both cases of partial and complete aging, we plot the critical value 𝑎c
against (a) 𝜏∗ and (b) 𝑞∞. These lines are derived from vertical and horizontal slices
of the heat maps in Fig. 2, respectively.

as a function of noise intensity 𝑎 for two values of 𝜏∗. The outcomes
from numerical simulations with 𝑁 = 104 agents are in good agreement
with the theoretical predictions, which are derived in Appendix B.

The mechanism underlying the phase transition exhibited in both
the partial and complete aging scenarios can be interpreted as a sym-
metry breaking related to the average age of the agents in each state. In
the disordered phase (𝑎 > 𝑎c), noise is the dominant update mechanism
and no state predominates over the other, resulting in all agents having
similar ages regardless of their state. The average ages in the complete
aging case are higher than in the partial aging case, as all state changes
(whether driven by noise or imitation) are influenced by age, making
it less likely for agents to flip their state. In the ordered phase (𝑎 < 𝑎c),
in contrast, there is a preferred opinion and state updates are mainly
driven by the imitation mechanism. As a result, agents supporting
the majority opinion change state less frequently and have a higher
average age compared to those supporting the minority opinion. This
leads to an asymmetric distribution of the quantities ⟨𝜏±⟩, with the one
corresponding to the majority opinion predominating over the other.
This effect is even more pronounced in the complete aging scenario, as
age also influences state updates driven by noise, making it increasingly
unlikely for agents supporting the majority opinion to flip their state.

4.2. Complete aging for 𝑞∞ = 0

Unlike the partial aging scenario, the complete aging case for 𝑞∞ = 0
exhibits different behavior that must be studied separately. The deter-
mination of the function 𝛷(𝑥) relies on the calculation of the required
series that appear in the numerator and denominator of Eqs. (2). On the
one hand, the series in the numerator, given in Eq. (B.7), is convergent
for all values of 𝑥, 𝑎 and 𝜏∗. On the other hand, the convergence of the
series in the denominator of Eqs. (2) is not guaranteed. Therefore, the
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Fig. 4. Mean internal age ⟨𝜏𝑠⟩ of agents in state 𝑠 = ±1 versus the noise intensity 𝑎,
considering that the majority is in state +1. We have set 𝑞∞ = 10−1 and (a) 𝜏∗ = 2
and (b) 𝜏∗ = 10. Symbols correspond to the results obtained in numerical simulations
with 𝑁 = 104 agents, in which we have averaged over 106 MCS after a transient of
106 MCS. On the other hand, solid lines correspond to the theoretical solutions given
by Eqs. (B.11) and (B.12).

explicit expression given in Eq. (B.6) is not always valid. The Raabe
criterion [30] leads us to the following condition for convergence

𝛬(𝑥, 1, 𝑎) < 1 − 1
𝜏∗

, (11)

such that
∞
∑

𝜏=0
𝐹𝜏 (𝑥) = 2𝐹1

(

1, 𝜏∗𝛬(𝑥, 1, 𝑎); 𝜏∗; 1) (12)

=

{ 𝜏∗−1
𝜏∗[1−𝛬(𝑥,1,𝑎)]−1 , if 𝛬(𝑥, 1, 𝑎) < 1 − 1

𝜏∗

∞, otherwise.

The convergence condition in Eq. (11) becomes more intuitive when
rewritten as

𝑥 > 𝑥∗ ≡ 1
2(1 − 𝑎)

( 2
𝜏∗

− 𝑎
)

, (13)

which implies that convergence is guaranteed for all values of 𝑥 only
if 𝑥∗ < 0. This requirement leads to the condition

𝑎 > 𝑎∗ ≡ 2
𝜏∗

, (14)

whereas for 𝑎 < 𝑎∗, there exist certain values of 𝑥 for which the sum
diverges and 𝛷(𝑥) vanishes. Notably, when 𝜏∗ < 2, the convergence
condition cannot be satisfied for any 𝑎 ∈ [0, 1], as 𝑎∗ > 1.

Focusing on the region 𝑎 > 𝑎∗, the function 𝛷(𝑥) can be expressed
s

𝜏∗ [1 − 𝛬(𝑥, 1, 𝑎)] − 1
5

𝛷(𝑥) =
(𝜏∗ − 1) [1 − 𝛬(𝑥, 1, 𝑎)] , (15)
which reduces Eq. (1) to the linear equation
𝑑 𝑥
𝑑 𝑡 = 𝐺(𝑥) = 𝜏∗

(𝜏∗ − 1)
( 2
𝜏∗

− 𝑎
) (

𝑥 − 1
2

)

. (16)

This equation presents a single fixed point at 𝑥st = 1∕2, which is stable
if 𝑎 > 𝑎∗. For 𝑎 < 𝑎∗, the solution would become unstable, but strictly
speaking, Eq. (16) is not valid in such region. Nevertheless, the value
btained from the convergence condition, 𝑎∗, represents the critical
alue 𝑎c = 𝑎∗ in the case 𝑞∞ = 0.

The failure of the adiabatic approximation for 𝑎 < 𝑎c can be
nderstood by analyzing the time evolution of the age distribution
+
𝜏 , as exemplified in Fig. 5. The rate equation for the global variable

𝑥, Eq. (1), is derived through an adiabatic elimination, under the
ssumption that the microscopic variables 𝑥±𝜏 rapidly reach a stationary
tate, leaving the dynamics primarily governed by the evolution of the
lobal variable. This approximation is always valid for 𝑞∞ > 0, while
or 𝑞∞ = 0, it holds only if 𝑎 > 𝑎c. In these cases, the age distribution

reaches a steady state, and excellent agreement between simulations
and theory, given by Eqs. (A.13), is observed. However, for 𝑞∞ = 0 and
𝑎 < 𝑎c, the age distribution evolves indefinitely over time, making the
adiabatic approximation invalid even though the numerical integration
of the rate equations, Eqs. (A.6) and (A.7), agrees with the simulation
results.

The observed bumps in the distribution for 𝑎 < 𝑎c in Fig. 5 can
e explained by the underlying microscopic dynamics. Initially, the
opulation splits into two distinct groups: a majority of young agents

and a minority of older agents. Young agents frequently change their
tates, leading to the peak of the distribution occurring at 𝜏 = 0.

In contrast, older agents undergo state changes much less frequently,
ausing a bump in the distribution that aligns roughly with the time of

measurement. This effect is particularly pronounced in the case 𝑞∞ = 0,
here state changes of the older agents are even less frequent.

The evolution of the overall age distribution for 𝑞∞ = 0 and 𝑎 < 𝑎c
reveals a trend toward an aged population where transitions between
states are progressively more difficult, irrespectively of age. At the
beginning of the dynamics, when the agents have zero age, the system
rapidly evolves from the initial condition 𝑥 = 1∕2 toward one of the
two ordered states, say 𝑥 = 0. Following this short regime, most agents
become older in the state −1 and young agents remain more likely
to change states. In the standard voter model, where 𝑎 = 0 and only
the herding mechanism is activated, the majority drives the system
to the absorbing state 𝑥 = 0 with an asymptotic power-law behavior
𝑥(𝑡) ∼ 𝑡−𝛽 , 𝑥+0 (𝑡) ∼ 𝑡−𝛽−1 with exponent 𝛽 = 𝜏∗ [26]. When considering
the idiosyncratic mechanism, 𝑎 > 0, agents can change their state
ndependently, which slows the decay toward the ordered state 𝑥 = 0.
n this case, it is found numerically that both 𝑥(𝑡) and 𝑥+0 (𝑡) present the
ame power-law decay 𝑥(𝑡) ∼ 𝑥+0 (𝑡) ∼ 𝑡−𝛽 with an exponent 𝛽 > 0 for

all the range 𝑎 ∈ (0, 𝑎c), see Appendix C. Random changes of state are
ncreasingly dominant as the system approaches consensus and, since
he aging probability is never strictly equal to zero for finite age 𝜏, there
s always a chance for the agents to change state even if the system
as reached the fully ordered state. Although the theory fails to predict
he stable solution 𝑥st in this regime, it can be determined by taking
he limit 𝑞∞ → 0 of the stable solutions of Eq. (1) for 𝑞∞ > 0. As 𝑞∞

decreases, the critical value 𝑎c(𝑞∞) approaches 𝑎c(𝑞∞ = 0) = 𝑎∗ and the
econd-order transition becomes more abrupt, with the magnetization
st taking the form of a step function. This phenomenon can be seen

n Fig. 6 in the case 𝜏∗ = 4, for which 𝑎∗ = 0.5. In the limit 𝑞∞ → 0,
𝑚st = 1 across the entire range 𝑎 ∈ [0, 𝑎c). This phenomenon, combined
with the decay of 𝑥(𝑡) and 𝑥+0 (𝑡), evidences that for all practical purposes
a first-order phase transition occurs from 𝑚st = 1 to 𝑚st = 0 at 𝑎 = 𝑎c.
However, this result has yet to be rigorously demonstrated.

This transition can also be understood as a competition between
aging effects, characterized by 𝜏∗, and idiosyncratic behavior governed
by 𝑎. For 𝑎 < 𝑎c, the aging probability decays sufficiently fast, driving
the system toward an ordered state. This is always the case when 𝜏∗ < 2,
for which the corresponding 𝑎∗ is greater than 1. On the other hand,
for 𝑎 > 𝑎c, the system behaves as if aging were absent, rapidly reaching
the disordered state.
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Fig. 5. Time evolution of the normalized age distribution 𝑝+𝜏 = 𝑥+𝜏 ∕𝑥
+ in the case of complete aging for 𝜏∗ = 4 showing behavior below (𝑎 = 0.2) and above (𝑎 = 0.9) the critical

point 𝑎c = 2∕𝜏∗, respectively. Panels (a) and (b) correspond to 𝑞∞ = 0.01 while panels (c) and (d) correspond to 𝑞∞ = 0. Colored lines correspond to the results of numerical
simulations with 𝑁 = 103 agents averaged over 103 trajectories for different times, as indicated in legend. Black dashed lines represent the mean-field prediction: obtained directly
from Eqs. (A.13) in (a,b,d), or by numerical integration of the rate equations, Eqs. (A.6) and (A.7), in (c). Insets in panels (b) and (d) contain only the theoretical expression to
mphasize the exponential and power-law behavior, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
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Fig. 6. Magnetization, 𝑚st, versus the noise intensity, 𝑎, in the case of complete aging
or 𝜏∗ = 4 and several values of 𝑞∞. The curves represent the numerical solution of the
tationary form of Eq. (1).

5. Conclusions

Previous studies on aging in the literature have exclusively con-
sidered memory effects that influence the herding mechanism. In this
paper, we extend the analysis of the noisy voter model with aging
by also incorporating the influence of memory effects on idiosyncratic
changes. We have derived a mean-field description for generic forms
of aging kernels that independently influence each mechanism of in-
teraction, allowing for potential future extensions. However, our study
specifically focuses on the case where the same algebraic aging governs
both mechanisms.

The complete aging scenario with 𝑞∞ > 0 is qualitatively similar
to the partial case, with a second-order phase transition occurring for
a critical value of the noise intensity, 𝑎 . However, compared to the
6

c

partial aging scenario, the consensus region expands due to a shift
of the critical value 𝑎c to higher values. Additionally, the asymmetry
between the average ages of agents in each state, ⟨𝜏±⟩ becomes more
pronounced.

In contrast, the complete aging case exhibits a unique regime for
𝑞∞ = 0. The adiabatic approximation becomes invalid for 𝑎 < 𝑎c,
ince the microscopic variables 𝑥±𝜏 do not reach a steady state, evolving

indefinitely over time. However, numerical integration of the mean-
ield equations still allows for accurate prediction of the results from
umerical simulations. The system evolves toward one of the ordered
tates exhibiting a power-law decay over time. Although not rigor-
usly demonstrated, for all purposes, a first-order transition from a
ompletely ordered to a disordered state for 𝑎 = 𝑎c is observed.

Exploring alternative forms of the aging kernel could reveal new
features. In our previous work on the noisy voter model with partial
aging [25], we did not observe qualitatively different outcomes for al-
gebraic and exponential decays of the aging probability 𝑞(𝜏). However,
n the context of complete aging, the power-law decay 𝑞(𝜏) ∼ 𝜏−1 may
epresent a marginal case under certain conditions, as suggested by
revious work in the voter model [26]. Preliminary analysis indicates

that, for 𝑞∞ ≠ 0, the system orders regardless of the decay rate of the
ging probability, while for 𝑞∞ = 0, the behavior depends on the law
f decay. We conjecture that, for decays faster than 1∕𝜏, the system
rders in the same manner as in the case 𝑞∞ ≠ 0, while for slower
ecays, the system becomes trapped in a frozen state. This conjecture
as verified for specific cases such 𝑞𝜏 ∼ 1∕𝜏1∕2, where order occurs, and

or the exponential decay case, 𝑞𝜏 ∼ 𝑒−𝜏∕𝜏∗ , where the system quickly
eaches a frozen state, determined by both the initial condition 𝑥(0) and
he noise intensity 𝑎. This issue requires further extensive investigation,
hich we leave for future work.

Another promising direction for future research would be to move
beyond all-to-all interactions and explore the effects of complete aging
on opinion dynamics in random networks.
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Appendix A. Rate equations

Let us denote by 𝑥𝑠𝜏 the fraction of agents in state 𝑠 = ±1 and age
𝜏 = 0, 1,… . Their corresponding rate equations are given by
𝑑 𝑥𝑠𝜏
𝑑 𝑡 = 𝛺𝑠𝑠(𝜏 − 1) −

∑

𝑠′
𝛺𝑠𝑠′ (𝜏), 𝜏 ≥ 1, (A.1)

where 𝛺𝑠𝑠′ (𝜏) ≡ 𝛺(𝑠 → 𝑠′, 𝜏) is the transition rate from state 𝑠 to state 𝑠′

or an agent with age 𝜏. The first term represents the updates for agents
ith age 𝜏 − 1 whose states did not change, leading to an increase in

heir internal time by one unit, i.e., 𝜏− 1 → 𝜏. The second term accounts
or the reduction of the number of agents in state 𝑠 and with age 𝜏,
hich occurs due to two possible outcomes:

1. The agent changes state (𝑠 → 𝑠′ ≠ 𝑠) and becomes a new agent
in state 𝑠′ with age 0, hence decreasing 𝑥𝑠𝜏 and increasing 𝑥𝑠′0 .

2. The agent remains in the same state (𝑠 → 𝑠) but then its age
increases by one (𝜏 → 𝜏 + 1), hence decreasing 𝑥𝑠𝜏 and increasing
𝑥𝑠𝜏+1.

The case of agents with age 𝜏 = 0 requires an special treatment, giving
the following rate equation
𝑑 𝑥𝑠0
𝑑 𝑡 =

∞
∑

𝜏=0

∑

𝑠′≠𝑠
𝛺𝑠′𝑠(𝜏) −

∑

𝑠′
𝛺𝑠𝑠′ (0), (A.2)

where the first term accounts for agents that, regardless of their age,
ave changed their state to state 𝑠 (𝑠′ ≠ 𝑠 → 𝑠) and consequently its
nternal time is reset to zero, 𝜏 → 0, and the second term is analogous
o the one of Eq. (A.1).

Summing Eqs. (A.1) and (A.2) over all values of 𝜏, one obtains the
rate equations for the fraction of agents in state 𝑠 as 𝑥𝑠 = ∑∞ 𝑥𝑠 , which
7

𝜏=0 𝜏
reads
𝑑 𝑥𝑠
𝑑 𝑡 =

∞
∑

𝜏=0

∑

𝑠′

(

𝛺𝑠′𝑠(𝜏) −𝛺𝑠𝑠′ (𝜏)
)

. (A.3)

In order to derive the particular rate equations of our model, let
us explain in detail the rate 𝛺−−(𝜏), for which an agent with state
1 and age 𝜏 has been selected and does not change its state. First,

it has to be selected with probability 𝑥−𝜏 . If the idiosyncratic rule is
elected, with probability 𝑎, the agent keeps its state if either the
echanism is not activated, with probability 1 − 𝑞𝜏 , or if the rule is

ctivated, with probability 𝑞𝜏 , and the state −1 is selected at random,
with probability 1∕2. If, on the other hand, the social rule is chosen,
with probability 1 − 𝑎, the agent remains in the same state if either the
copying mechanism is not activated, with probability 1 − 𝑞𝜏 , or if the
copying mechanism is activated, with probability 𝑞𝜏 , and a neighbor
with state −1 is chosen, with probability 𝑥−. These possible scenarios
lead to the rate

𝛺−−(𝜏) = 𝑥−𝜏

[

𝑎
(

𝑞𝜏
2

+ (1 − 𝑞𝜏 )
)

+ (1 − 𝑎)
(

𝑞𝜏𝑥
− + (1 − 𝑞𝜏 )

)

]

. (A.4)

The other rates 𝛺𝑠𝑠′ can be calculated with similar reasoning. After
simplification, the final result is
𝛺−−(𝜏) = 𝑥−𝜏

[

𝑎
2
(2 − 𝑞𝜏 ) + (1 − 𝑎)(1 − 𝑥+𝑞𝜏 )

]

,

−+(𝜏) = 𝑥−𝜏

[

𝑎
2
𝑞𝜏 + (1 − 𝑎)𝑥+𝑞𝜏

]

,

+−(𝜏) = 𝑥+𝜏

[

𝑎
2
𝑞𝜏 + (1 − 𝑎)𝑥−𝑞𝜏

]

,

++(𝜏) = 𝑥+𝜏

[

𝑎
2
(2 − 𝑞𝜏 ) + (1 − 𝑎)(1 − 𝑥−𝑞𝜏 )

]

,

(A.5)

where the relation 𝑥− = 1 − 𝑥+ has been used for convenience.
From these rates, one can write Eqs. (A.1) and (A.2) as

𝑑 𝑥−𝜏
𝑑 𝑡 = 𝛺−−(𝜏 − 1) − 𝑥−𝜏 ,

𝑑 𝑥+𝜏
𝑑 𝑡 = 𝛺++(𝜏 − 1) − 𝑥+𝜏 ,

(A.6)

for 𝜏 ≥ 1, and
𝑑 𝑥−0
𝑑 𝑡 = 𝑎

2
𝑦̃+ + (1 − 𝑎)𝑥−𝑦+ − 𝑥−0 ,

𝑑 𝑥+0
𝑑 𝑡 = 𝑎

2
𝑦̃− + (1 − 𝑎)𝑥+𝑦− − 𝑥+0 ,

(A.7)

for 𝜏 = 0, where we have defined

𝑦𝑠 ≡
∞
∑

𝜏=0
𝑞𝜏𝑥

𝑠
𝜏 , 𝑦̃𝑠 ≡

∞
∑

𝜏=0
𝑞𝜏𝑥

𝑠
𝜏 . (A.8)

With the aim of obtaining a closed equation for the time evolution of
the global variables 𝑥𝑠, we use an adiabatic approximation whereby we
assume that the microscopic variables 𝑥𝑠𝜏 rapidly arrive to the stationary
state and the time derivatives of Eqs. (A.6) and (A.7) can be set to zero.
We remark that for complete aging and 𝑞∞ = 0, this assumption does
not always hold, as discussed in Section 4.2. When valid, it leads to the
ollowing recursive relation
𝑥−𝜏 = 𝑥−0 𝐹𝜏 (𝑥+),
+
𝜏 = 𝑥+0 𝐹𝜏 (𝑥−),

(A.9)

with

𝐹0(𝑥) = 1, 𝐹𝜏 (𝑥) ≡
𝜏−1
∏

𝑘=0
𝛬(𝑞𝑘 𝑥, 𝑞𝑘, 𝑎), 𝜏 ≥ 1, (A.10)

and
( 𝑞 )
𝛬(𝑧, 𝑞 , 𝑎) = 𝑎 1 −
2

+ (1 − 𝑎)(1 − 𝑧). (A.11)



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 194 (2025) 116153J. Llabrés et al.

𝜏

s
t
a

e

d

𝜉

𝑞
p

t
t

∑

∑

∑

f

p

Summing Eqs. (A.9) over all 𝜏 ≥ 0, we obtain

𝑥− = 𝑥−0

∞
∑

𝜏=0
𝐹𝜏 (𝑥+),

𝑥+ = 𝑥+0

∞
∑

𝜏=0
𝐹𝜏 (𝑥−),

(A.12)

which substituted in Eqs. (A.9) leads to
𝑥−𝜏 = 𝑥−

𝐹𝜏 (𝑥+)
∑

𝜏 𝐹𝜏 (𝑥+)
,

𝑥+𝜏 = 𝑥+
𝐹𝜏 (𝑥−)

∑

𝜏 𝐹𝜏 (𝑥−)
,

(A.13)

which are now expressed in terms of the global variables 𝑥±.
On the other hand, adding Eqs. (A.6) and (A.7) over all values of

, we obtain the corresponding equations for the fraction 𝑥𝑠 of each
state 𝑠.
𝑑 𝑥−
𝑑 𝑡 = 𝑎

2
(𝑦̃+ − 𝑦̃−) + (1 − 𝑎)(𝑥−𝑦+ − 𝑥+𝑦−),

𝑑 𝑥+
𝑑 𝑡 = 𝑎

2
(𝑦̃− − 𝑦̃+) + (1 − 𝑎)(𝑥+𝑦− − 𝑥−𝑦+).

(A.14)

Moreover, note that one of the two equations can be eliminated
ince 𝑥+ + 𝑥− = 1. Then, to obtain a closed evolution equation for
he global variable 𝑥+, we need to express the variables 𝑦𝑠 and 𝑦̃𝑠

ppearing in Eqs. (A.14) in terms of 𝑥+. This can be done by substituting
Eqs. (A.13) into Eqs. (A.8), yielding
𝑦− = (1 − 𝑥+)𝛷(𝑥+), 𝑦+ = 𝑥+𝛷(1 − 𝑥+),

𝑦̃− = (1 − 𝑥+)𝛷̃(𝑥+), 𝑦̃+ = 𝑥+𝛷̃(1 − 𝑥+),
(A.15)

where we have introduced the functions

𝛷(𝑥) =
∑∞

𝜏=0 𝑞𝜏𝐹𝜏 (𝑥)
∑∞

𝜏=0 𝐹𝜏 (𝑥)
and 𝛷̃(𝑥) =

∑∞
𝜏=0 𝑞𝜏𝐹𝜏 (𝑥)
∑∞

𝜏=0 𝐹𝜏 (𝑥)
. (A.16)

Let us note here, for consistency, that in the aging-less case, 𝑞𝜏 = 𝑞𝜏 = 1,
it is 𝛷̃(𝑥) = 𝛷(𝑥) = 1 and, hence, 𝑦̃𝑠 = 𝑦𝑠 = 𝑥𝑠, for 𝑠 = ±1.

Replacement of Eqs. (A.15) in Eqs. (A.14) leads to the following rate
quation for 𝑥 ≡ 𝑥+

𝑑 𝑥
𝑑 𝑡 = 𝐺(𝑥) = 𝑎

2
[

(1 − 𝑥)𝛷̃(𝑥) − 𝑥𝛷̃(1 − 𝑥)
]

+ (1 − 𝑎)𝑥(1 − 𝑥) [𝛷(𝑥) −𝛷(1 − 𝑥)] .

(A.17)

Appendix B. Calculation of sums involving 𝑭𝝉 (𝒙)

Let us assume that the herding and the idiosyncratic mechanisms
are modeled by the following rational function of the age

𝑞𝜏 =
𝑞∞𝜏 + 𝜏∗

𝜏 + 𝜏∗
, 𝑞𝜏 =

𝑞∞𝜏 + 𝜏∗

𝜏 + 𝜏∗
, (B.1)

respectively, where 𝜏∗ > 0 and 𝑞∞, 𝑞∞ ∈ [0, 1]. The function 𝐹𝜏 (𝑥)
efined in Eq. (3) is given by

𝐹𝜏 (𝑥) ≡
𝜏−1
∏

𝑘=0
𝛬(𝑞𝑘 𝑥, 𝑞𝑘, 𝑎) = 𝛬(𝑞∞𝑥, 𝑞∞, 𝑎)𝜏

(

𝜏∗𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞)
)

𝜏
(𝜏∗)𝜏

, 𝜏 ≥ 1,

(B.2)

where (𝑧)𝜏 ≡ 𝛤 (𝑧+𝜏)∕𝛤 (𝑧) is the Pochhammer symbol, and the function
(𝑥, 𝑎, 𝑞∞, 𝑞∞) reads

𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞) ≡ 𝛬(𝑥, 1, 𝑎)
𝛬(𝑞∞𝑥, 𝑞∞, 𝑎) , (B.3)

with

𝛬(𝑥, 𝑞 , 𝑎) = 𝑎 (1 − 𝑞∕2) + (1 − 𝑎)(1 − 𝑥), (B.4)
8

as defined in Eq. (4). It is interesting to obtain the asymptotic behavior
in the limit of large 𝜏 of Eq. (B.2), which yields

𝐹𝜏 (𝑥) ∼ 𝛬(𝑞∞𝑥, 𝑞∞, 𝑎)𝜏𝜏𝜏∗(𝜉(𝑥,𝑎,𝑞∞ , ̃𝑞∞)−1)
[

𝛤 (𝜏∗)
𝛤 (𝜏∗𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞))

+ 𝑂
( 1
𝜏

)

]

.

(B.5)

This expression, together with Eqs. (A.13) evidences that stationary age
distribution 𝑥±𝜏 decays exponentially for large age 𝜏, except in the case
∞ = 0. In this special case, since 𝛬(0, 0, 𝑎) = 1, the decay follows a
ower-law behavior.

The sums required to calculate 𝛷(𝑥), 𝛷̃(𝑥) as defined in Eqs. (A.16),
ake the following explicit forms in terms of the hypergeometric func-
ion 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧),

∞
∑

𝜏=0
𝐹𝜏 (𝑥) = 2𝐹1

(

1, 𝜏∗𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞); 𝜏∗;𝛬(𝑞∞𝑥, 𝑞∞, 𝑎)) , (B.6)

∞

𝜏=0
𝑞𝜏𝐹𝜏 (𝑥) = 2𝐹1

(

1, 𝜏∗𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞); 1 + 𝜏∗;𝛬(𝑞∞𝑥, 𝑞∞, 𝑎))

+
𝑞∞

1 + 𝜏∗
𝛬(𝑥, 1, 𝑎)

× 2𝐹1
(

2, 1 + 𝜏∗𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞); 2 + 𝜏∗;𝛬(𝑞∞𝑥, 𝑞∞, 𝑎)) , (B.7)
∞

𝜏=0
𝑞𝜏𝐹𝜏 (𝑥) = 2𝐹1

(

1, 𝜏∗𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞); 1 + 𝜏∗;𝛬(𝑞∞𝑥, 𝑞∞, 𝑎))

+
𝑞∞

1 + 𝜏∗
𝛬(𝑥, 1, 𝑎)

× 2𝐹1
(

2, 1 + 𝜏∗𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞); 2 + 𝜏∗;𝛬(𝑞∞𝑥, 𝑞∞, 𝑎)) . (B.8)

For the complete aging case, where 𝑞𝜏 = 𝑞𝜏 , Eqs. (B.7) and (B.8) become
∞
∑

𝜏=0
𝑞𝜏𝐹𝜏 (𝑥) = 1

1 − 𝛬(𝑥, 1, 𝑎) , (B.9)

irrespective of the parameters 𝜏∗, 𝑞∞.
Back to the general case, and in order to compute the average age of

agents in each state ⟨𝜏±⟩ = 1
𝑥±

∑

𝜏 𝜏 𝑥±𝜏 , we use Eqs. (A.13) and calculate
the following sum
∞

𝜏=0
𝜏 𝐹𝜏 (𝑥) = 𝛬(𝑥, 1, 𝑎) 2𝐹1

(

2, 1 + 𝜏∗𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞); 1 + 𝜏∗;𝛬(𝑞∞ 𝑥, 𝑞∞, 𝑎)) ,

(B.10)

such that

⟨𝜏±⟩ = 
(

𝑥∓, 𝑞∞, 𝑞∞, 𝑎) , (B.11)

where 𝑥+ ≡ 𝑥 and 𝑥− ≡ 1 − 𝑥 are the stable solutions of Eq. (1) and the
unction  is given by


(

𝑥, 𝑞∞, 𝑞∞, 𝑎) = 𝛬(𝑥, 1, 𝑎) 2𝐹1
(

2, 1 + 𝜏∗𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞); 1 + 𝜏∗;𝛬(𝑞∞ 𝑥, 𝑞∞, 𝑎))

2𝐹1
(

1, 𝜏∗𝜉(𝑥, 𝑎, 𝑞∞, 𝑞∞); 𝜏∗;𝛬(𝑞∞ 𝑥, 𝑞∞, 𝑎)) .

(B.12)

Appendix C. Time evolution of the global variable for 𝒒∞ = 𝟎

Below the critical point, the microscopic variables 𝑥±𝜏 do not reach a
stationary state, evolving indefinitely over time and driving the global
state of the system 𝑥 toward one of the ordered states, say 𝑥 = 0. After
a transient period, a power-law decay of the form 𝑡−𝛽 is observed for
both 𝑥(𝑡) and 𝑥+0 (𝑡) (see Fig. C.7). The closer the system is to the critical
point, the longer the transient time. The exponent 𝛽 is positive for all
the range 𝑎 ∈ (0, 𝑎c) and decreases as the system approaches the critical
oint 𝑎c.

Data availability

No data was used for the research described in the article.
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Fig. C.7. (a) Time evolution of the densities 𝑥(𝑡) and 𝑥+0 (𝑡) for different values of 𝑎 indicated in the legend for 𝑞∞ = 0, 𝜏∗ = 4 obtained from numerical simulations with 𝑁 = 103
agents averaged over 103 trajectories. The segments have slope 𝛽, obtained by means of a linear fit to the asymptotic region of each curve. (b) Exponent 𝛽 versus the noise intensity
𝑎, for values 𝜏∗ = 4, 6. Dashed lines correspond to a fitting of the form 𝛽 = 1 − 𝑎𝜏∗∕2.
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