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Approximate numerical methods are one of the most used strategies to extract information from
many-interacting-agents systems. In particular, numerical approximations are of extended use to deal
with epidemic, ecological and biological models, since unbiased methods like the Gillespie algorithm
can become unpractical due to high CPU time usage required. However, the use of approximations
has been debated and there is no clear consensus about whether unbiased methods or biased
approach is the best option. In this work, we derive scaling relations for the errors in approximations
based on binomial extractions. This finding allows us to build rules to compute the optimal values of
both the discretization time and number of realizations needed to compute averages with the biased
method with a target precision and minimum CPU-time usage. Furthermore, we also present another
rule to discern whether the unbiased method or biased approach is more efficient. Ultimately, we will
show that the choice of the method should depend on the desired precision for the estimation of
averages.

Epidemic modeling has traditionally relied on stochastic methods to go
beyondmean-field deterministic solutions1–5. The contagion process itself is
naturally adapted to a stochastic treatment since the basic units, individuals,
can not be described successfully using deterministic laws. For example, two
given individuals may or may not develop a contact even though they are
potentially able to do so given their geographical location. Even further,
should the contact be established and should one of the individuals be
infectious, the infection of the second individual is not a certainty, but rather
an event that occurswith someprobability.Computational epidiomiologists
have implemented these stochastic contagions in all the modeling efforts
and at different scales, from agent-based6–12 to population-based13–17. In the
case of agent-basedmodels stochastic contagion events can be traced one by
one, even though for practical purposes in computation sometimes they
may be aggregated. In the population-level models, different contagion
processes are aggregated together following some generic feature (number
of neighboring individuals, geographical location, etc.). These models have
the virtue of drastically reducing the number of variables needed to describe
the whole population and, at the computational level, the positive side effect
of enormously decreasing the model running time. A widespread practice
nowadays18–25 is to approximate the statistical description of these contagion
aggregations by binomial or multinomial distributions.

The same methodological and conceptual issues appear well beyond
the reign of epidemic modeling. Indeed, stochastic processes are one of the

main pillars of complexity science26–28. The list of fruitful applications is
endless, but just tonamea fewparadigmatic examples: populationdynamics
in ecology29,30, gene expression31, metabolism in cells32, finances andmarket
crashes33,34, telecommunications35, chemical reactions36, quantum physics37

and active matter38. As models become more intricate, there arises the
technical challenge of producing stochastic trajectories in feasible compu-
tation times, since unbiased methods that generate statistically correct
realizations of stochastic trajectoriesmay becomeunpractical due to lengthy
computations. Approximate methods aim at solving this issue by sig-
nificantly reducing the CPU time usage. The use of approximated methods
is extended (see e.g.16,17,21), and some authors assert that they might be the
only way to treat effectively large systems of heterogeneous agents39.
However, other works claim that the systematic errors induced by the
approximations might not trade-off the reduction in computation time40,41.
The primary objective of this work is to shed light on this debate and assess
in which circumstances approximate methods based on binomial extrac-
tions, which we call binomial methods, can be advantageous with respect to
the unbiased algorithms.

To solve this question, we derive in this paper a scaling relation for the
errors of the binomialmethods. Thismain result allows us to obtain optimal
values for the discretization time and number of realizations to compute
averages with a desired precision and minimum CPU time consumption.
Furthermore, we derive a rule to discern if the binomial method is going to
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be faster than the unbiased counterparts. Lastly, we perform a numerical
study to compare the performance of both the unbiased and binomial
methods and check the applicability of our proposed rules. Ultimately, we
will show that the efficiency of the binomial method is superior to the
unbiased approaches only when the target precision is below a certain
threshold value.

Methods
Transition rates
Throughout this work we will focus on pure jumping processes, this is,
stochastic models in which agents switch states within a discrete set of
possible states. Spontaneous creation or annihilation of agents will not be
considered, therefore, its total number, N, is conserved. We furthermore
assumeMarkovian dynamics, so given that the system is in a particular state
at time t, themicroscopic rules that dictate the switching between states just
depend on the current state sðtÞ ¼ s1ðtÞ; . . . ; sN ðtÞ

� �
. These microscopic

rules are given in terms of the transition rates, defined as the conditional
probabilities per unit of time to observe a transition,

wt s ! s0ð Þ :¼ limdt!0
Pðs0; t þ dtjs; tÞ

dt
: ð1Þ

Aparticular set of transitions inwhichwe are specially interesteddefine
the one-step processes, meaning that the only transitions allowed are those
involving the change of a single agent’s state, with rates

wt
i ðsi ! s0iÞ :¼ wtðfs1; . . . ; si; . . . ; sNg ! fs1; . . . ; s0i; . . . ; sNgÞ; ð2Þ

for i = 1,…,N. Our last premise is to consider only transition rateswiðsi !
s0iÞ that do not depend explicitly on time t. Note that the rates could, in
principle, be different for every agent and depend in an arbitrary way on the
stateof the system.The act ofmodeling is actually topostulate the functional
form of these transition rates. This step is conceptually equivalent to the
choice of a Hamiltonian in equilibrium statistical mechanics.

Jumping processes of two-state agents, such that the possible states of
the ith agent can be si = 0 or si = 1, are widely used in many different appli-
cations, such as protein activation42, spins 1/243, epidemic spreading4,44,
voting dynamics45, chemical reactions46,47, drug-dependence in
pharmacology48, etc. For binary-state systems, quite commonly, the rate of
the process si = 0→ si = 1 is different from the reverse process si = 1→ si = 0
and we define the rate of agent i as

wiðsiÞ :¼
wið0 ! 1Þ if si ¼ 0;

wið1 ! 0Þ if si ¼ 1:

�
ð3Þ

As a detailed observation is usually unfeasible, we might be interested
in a macroscopic level of description focusing, for example, on the occu-
pation number n(t), defined as the total number of agents in state 1,

nðtÞ :¼
XN
i¼1

siðtÞ; ð4Þ

being N− n(t) the equivalent occupation of state 0. In homogeneous sys-
tems, those in which wi(si) =w(si), ∀ i, transition rates at this coarser level
can be computed from those at the agent level as

Wðn ! nþ 1Þ ¼ ðN � nÞwð0Þ;
Wðn ! n� 1Þ ¼ nwð1Þ: ð5Þ

Some applications might require an intermediate level of
description between the fully heterogeneous [Eq. (2)] and the fully
homogeneous [Eq. (5)]. In order to deal with a coarse-grained het-
erogeneity, we define C different classes of agents. Agents can be labeled
in order to identify their class, so that li = ℓ means that the ith agent
belongs to the class labeled ℓ with ‘ 2 ½1; C� and we require that all

agents in the same class share the same transition rates
wi(si) = wℓ(si), ∀ li = ℓ. This classification allows us to define the
occupation numbers Nℓ and nℓ as the total number of agents of the ℓth

class and the number of those in state 1 respectively. Moreover, we can
write the class-level rates:

W‘ðn‘ ! n‘ þ 1Þ ¼ N‘ � n‘
� �

w‘ð0Þ;
W‘ðn‘ ! n‘ � 1Þ ¼ n‘w‘ð1Þ:

ð6Þ

In general, stochastic models are very difficult and can not be solved
analytically. Hence, one needs to resort to numerical simulations than can
provide suitable estimations to the quantities of interest. There are twomain
types of simulation strategies: unbiased continuous-time and discrete-time
algorithms. Each one comeswith its own advantages anddisadvantages that
we summarize in the next sections.

Unbiased continuous-time algorithms
We proceed to summarize themain ideas behind the unbiased continuous-
time algorithms, and refer the reader to39,44,49–54 for a detailed description. Say
that we know the state of the system s(t) at a given time t. Such a state will
remain unchanged until a random time t0>t, when the system experiences a
transition or “jump" to a new state, also random, s0ðt0Þ:

sðtÞ!t
0�t

s0ðt0Þ: ð7Þ

Therefore, the characterization of a change in the system necessarily
requires us to sample both the transition time Δt ¼ t0 � t and the new
state s0ðt0Þ.

For binary one-step processes, new states are generated by changes in
single agents si→ 1− si. The probability that agent i changes its state in a
time interval t0 2 ½t; t þ dt� is wi si

� �
dt by definition of transition rate.

Therefore, theprobability that the agentwill not experience such a transition
in an infinitesimal time interval is 1� wi si

� �
dt. Concatenating such infi-

nitesimal probabilities,we can compute theprobabilityQi(si,Δt) that a given
agent doesnot change its state during an arbitrary time lapseΔt aswell as the
complementary probability Pi(si,Δt) that it does change state as

Qiðsi;ΔtÞ ¼ limdt!0ð1� wiðsiÞdtÞΔt=dt ¼ e�wiðsiÞΔt;

Piðsi;ΔtÞ ¼ 1� e�wiðsiÞΔt:
ð8Þ

Eq. (8) conforms the basic reasoning from which most of the
continuous-time algorithms to simulate stochastic trajectories are built. It
allows us to extend our basic postulate from Eq. (1), which only builds
probabilities for infinitesimal times (dt), to probabilities of events of arbi-
trary duration (Δt).Wenote that Eq. (8) is actually a conditional probability:
it is only valid provided that there are no other updates of the system in the
interval Δt. From it we can also compute the probability density function
that the ith agent remains at si for a non-infinitesimal time Δt and then
experiences a transition to s0i ¼ 1� si in the time interval [t+Δt, t+Δ
t+ dt]:

f iðsi;ΔtÞ ¼ e�wiðsiÞΔtwiðsiÞ: ð9Þ

The above quantity is also called first passage distribution for the ith

agent. Therefore, given that the system is in state s at time t, one can use the
elements defined above to compute the probability that the next change of
the system is due to switching in the agent i at time
t0 2 ½t þ Δt; t þ Δt þ dt�:

Pðith agent switches state in ½t þ Δt; t þ Δt þ dt�Þ
×PðOther agents change state only after t þ Δt þ dtÞ
¼ f iðsi;ΔtÞdt ×

YN

j≠i
Qjðsj;ΔtÞ ¼ e�WðsÞΔtwiðsiÞdt;

ð10Þ
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where we have defined the total exit rate,

WðsÞ :¼
XN
i¼1

wiðsiÞ: ð11Þ

Two methods, namely the first-reaction method and the Gillespie
algorithm, can be distinguished based on the scheme used to sample the
random jumping time t0 and switching agent i from the distribution spe-
cified in Eq. (10). The first-reactionmethod involves sampling one tentative
random time per transition using fi(si;Δt) and then choosing theminimum
among them as the transition time and reaction that actually occurs. In
contrast, the Gillespie algorithm directly samples the transition time using
the total rateW(s) and then determines which transition is being activated.
Depending on the algorithm used to randomly select the next reaction, the
computational complexity of the unbiased methods can vary from linear to
constant in the number of reactions (see e.g.54). Through the rest of the
paper, we will use Gillespie algorithms with binary search in representation
of unbiased methods.

Discrete-time approximations
In this section, we consider algorithms which at simulation step j update
timebya constant amount, tj+1 = tj+Δt.Note that thediscretization stepΔt
is no longer stochastic, and it has to be considered as a new parameter that
we are in principle free to choose. Larger values of Δt result in faster
simulations since fewer steps are needed in order to access enquired times.
Nevertheless, the discrete-time algorithms introduce systematic errors that
grow with Δt.

Discrete-synchronous. It is possible to use synchronous versions of the
process where all agents can potentially update their state at the same
time tj using the probabilities Pi(si, Δt) defined in Eq. (8) (see e.g.52,55,56).

Algorithm 1. Discrete time synchronous agent level
1: Increment time: tj+1 = tj+Δt
2: Compute all probabilities Pi(si,Δt), i = 1,…,N, using Eq. (8).
3: For all agents, generate a uniform random number ûi 2 ½0; 1�. If

ûi<Piðsi;ΔtÞ change the state si→ 1− si.
4: go to 1.
We note that the use of synchronous updates changes the nature of the

process since simultaneous updates were not allowed in the original
continuous-time algorithms. Given that the probabilities Pi(si,Δt) tend to
zero as Δt→ 0, one expects to recover the results of the continuous-time
asynchronous approach in the limit Δt→ 0. Nevertheless, users of this
method should bear in mind that this approximation could induce dis-
crepancies with the continuous-time process that go beyond statistical
errors57.

Binomial method: two simple examples. When building the class
version of the synchronous agent level (Algorithm 1), one can merge
together events with the same transition probability and sample the
updates using binomial distributions. This is the basic idea behind the
binomial method, which is of extended use in the current literature (e.-
g.17,23,25,58,59). Since references presenting thismethod are scarce, we devote
a longer section to its explanation.

Let us start with a simple example. Say that we are interested in
simulating the decay of N radioactive nuclei. We denote by si = 1 that
nucleus i is non-disintegrated and by si = 0 the disintegrated state. All nuclei
have the same time-independent decay rate μ:

wið1 ! 0Þ ¼ μ; wið0 ! 1Þ ¼ 0: ð12Þ
This is, all nuclei candecaywith the sameprobabilityμdt in every time-

bin of infinitesimal duration dt, but the reverse reaction is not allowed. This
simple stochastic process leads to an exponential decay of the average
number nt of active nuclei at time t as 〈nt〉 =Ne−μt.

Using the rates (12), we can compute the probability that one nucleus
disintegrates in a non-infinitesimal time Δt [Eq. (8)],

p :¼ Pið1;ΔtÞ ¼ 1� e�μΔt; 8i: ð13Þ
Therefore every particle follows a Bernoulli process in the time interval

Δt. That is, each particle decayswith a probability p and remains in the same
state with a probability 1− p. As individual decays are independent of each
other, the total number of decays in a temporal bin of duration Δt follows a
binomial distribution B(N, p),

P½n decays in Δt� ¼ N

n

� �
pnð1� pÞN�n: ð14Þ

The average of the binomial distribution is 〈n〉 =Np and its variance
σ2[n] =Np(1− p). This result invites us to draw stochastic trajectorieswith a
recursive relation:

ntþΔt ¼ nt � Δnt ; ð15Þ
wherewedenote byΔnt ~B(nt , p) a randomvaluedrawn fromthebinomial
distribution,with average value 〈Δnt〉 = ntp, andwe start fromn0 =N. In this
simple example, it turnsout thatEq. (15) doesgenerateunbiased realizations
of the stochastic process. From this equation we obtain

hntþΔtiB ¼ hntiB � hΔntiB ¼ hntiBð1� pÞ: ð16Þ
The symbol 〈⋅〉B denotes averages over the binomial method. The

solution of this recursion relation with initial condition n0 =N is

hntiB ¼ N 1� p
� � t

Δt ¼ Ne�μt ; ð17Þ

which coincides with the exact result independently of the value of Δt.
Therefore, the choice ofΔt is just related to the desired time resolution of the
trajectories. If Δt≪ (Nμ)−1, many of the outcomes Δnt used in Eq. (15) will
equal zero as the resolution would be much smaller than the mean time
between disintegration events. Contrary, if Δt≫ (Nμ)−1, much of the
information about the transitions will be lost and we would generate a
trajectory with abrupt transitions. Still, both simulations would faithfully
inform about the state of the system at the enquired times [see Fig. 1a, b].

Let us nowapply thismethod to another processwhere itwill no longer
be exact. Nevertheless, the basic idea of the algorithm is the same: compute
non-infinitesimal increments of stochastic trajectories using binomial dis-
tributions. We consider a system with N agents which can jump between
states with homogeneous constant rates:

wið1 ! 0Þ ¼ μ; wið0 ! 1Þ ¼ κ; ð18Þ
Which, at the macroscopic level read

Wðn ! n� 1Þ ¼ nμ; Wðn ! nþ 1Þ ¼ ðN � nÞκ; ð19Þ

fromwhich we can see that this process is a birth-death process. Reasoning
as before, the probabilities that a particle changes state in a non-infinitesimal
time Δt are:

Pð0;ΔtÞ ¼ 1� e�κΔt ;

Pð1;ΔtÞ ¼ 1� e�μΔt :
ð20Þ

Wherewe can avoid the use of subscripts since all agents share the transition
rates. At this point, we might feel also invited to write an equation for the
evolutionof agents in state 1 in termsof the stochastic numberof transitions:

ntþΔt ¼ nt þ Δnt;0 � Δnt;1: ð21Þ
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WhereΔnt,0 andΔnt,1 are binomial random variables distributed according
toB(N− nt, P(0,Δt)) andB(nt, P(1,Δt)), respectively.However, trajectories
generatedwith Eq. (21) turn out to be only an approximation to the original
process. The reason is that the probability that a given number of transitions
0→ 1 happen in a time window is modified as soon as a transition 1→ 0
occurs (and vice-versa). If we now take averages in Eq. (21), use the known
averages of the binomial distribution and solve the resulting linear iteration
relation for hntiB, we obtain

hntiB ¼ n0 �
b
a

� �
ð1� aÞt=Δt þ b

a
ð22Þ

with a = 2− e−μΔt− e−κΔt and b =N(1− e−κΔt). It is true that in the limit
Δt→ 0, this solution recovers the exact solution for the evolution equation
of the average number of agents in state 1 for the continuous-time process,
namely

dhnti
dt

¼ �μhnti þ κðN � hntiÞ;

hnti ¼ n0 � N
κ

κþ μ

� �
e�ðκþμÞt þ N

κ

κþ μ
;

ð23Þ

but the accuracy of the discrete approximation depends crucially on the
value of Δt. If, for instance, we take Δt≫maxðκ�1; μ�1Þ, then we can
approximate a ≈ 2, b ≈N, such that Eq. (22) yields

hntiB ¼ N � n0; if t=Δt odd;

n0; if t=Δt even;

�
ð24Þ

a numerical instability that shows up as a wild oscillation, see Fig. 2.
Therefore, the fact that agents are independent and rates are constant is

not sufficient condition to guarantee that the binomial method generates
unbiased trajectories for arbitrary values of the discretization step Δt.
Nevertheless, we note that the only condition needed to ensure that Eq. (21)
is a good approximation to the exact dynamics, Eq. (23), is that
Δt≪minðκ�1; μ�1Þ. Given than the system size N does not appear in this
condition, we expect the binomial method to be very efficient to simulate
this kind of process if we take a sufficiently small value forΔt, independently
of the number of agents, see Fig. 2, where both Δt = 0.1, 1 produce a good
agreement for μ = κ = 1. By comparing the average value of the binomial
method, Eq. (22) with the exact value, Eq. (23), we note that the error of the
binomial approximation can be expanded in a Taylor series

hntiB � hnti ¼ λΔt þOðΔt2Þ: ð25Þ

where the coefficient of the linear term λ depends on t and N, as well as on
other parameters of the model. We will check throughout this work that a
similar expansion of the errors in the binomial method holds for the case of
more complex models.

Binomial method: general algorithm. If we go back to the general two-
state process in which the functional form of the rates can have an
arbitrary dependence on the state of the system, we can approximate the
probability that the state of agent i changes in a time interval Δt by
Pi(si, Δt) [Eq. (8)]. If all these probabilities are different, we cannot group
them in order to conform binomial samples. If, on the other hand, we can
identify large enough classes ‘ ¼ 1; 2; . . . ; C such that allNℓ agents in the
same class ℓ have the same rates wℓ(s), we can approximate the variation
of the occupation number nℓ of each class during the time Δt as the
difference Δnℓ,0− Δnℓ,1 where Δnℓ,0 and Δnℓ,1 follow, respectively,
binomial distributions B(Nℓ− nℓ, Pℓ(0, Δt)) and B(nℓ, Pℓ(1, Δt)), with
Pℓ(si, Δt) given by Eq. (8) using any agent i belonging to class ℓ. All class
occupation numbers are updated at the same time step j, yielding the
synchronous binomial algorithm, which reads:

Algorithm 2. Binomial synchronous class level
1: Update time as tj+1 = tj+Δt.
2: For every class ‘ 2 ½1; . . . ; C�: Update the values of Pℓ(1,Δt),

Pℓ(0,Δt), using Eq. (8).
3: For every class ‘ 2 ½1; . . . ; C�: Update the number of agents as

nℓ→ nℓ+Δnℓ,0−Δnℓ,1, where Δnℓ,0 and Δnℓ,1 are values of bino-
mial random variables distributed according to
B(Nℓ− nℓ, Pℓ(0,Δt)) and B(nℓ, Pℓ(1,Δt)), respectively.

4: go to 1.
A similar reasoning can be built departing from the knowledge that the

number n of occurrences of continuous-time independent processes with
constant rates follows a Poisson distribution36, namely e−ΛΛn/n!, being the
parameter Λ of the Poisson distribution equal to the product of the rate
times the time interval considered. Therefore, the number of firings of each
class in the time intervalΔt,Δnℓ,1 andΔnℓ,0, canbe approximatedbyPoisson
random variables with parameters Wℓ(nℓ→ nℓ− 1)Δt and
Wℓ(nℓ→ nℓ+ 1)Δt, respectively. This conception gives rise to the τ-leaping
algorithm39,44,56,60–63 used in the context of chemical modeling. Given that
Poisson random variables are unbounded from above, the τ-leaping algo-
rithm may yield negative values for the occupation numbers nℓ (see e.g.
refs. 39,56). Consequently, our focus will be on the binomialmethod, which
does not exhibit this drawback.

Results and discussion
The 27

4 rule
The major drawback of the binomial method to simulate trajectories is the
necessity offinding aproper discretization timeΔt that avoids both slowand
inaccurate implementations. In this section, we propose a semi-empirical
predictor for the values of the optimal choice of Δt that propitiates the

Fig. 1 | Exact binomial method. Simulations of the radioactive decay process with
rates given by Eq. (12), using the binomial method [Eq. (15)]. In a the time dis-
cretization is Δt = 1, whereas in b is Δt = 0.5. In both panels N = 100 and μ = 1. Dots
and error bars indicate the average and standard error respectively, both computed
from 20 simulations. With continuous line, we show the analytical average (black)
plus and minus the analytical standard error (gray dashed lines):
hnðtÞi± σ½nðtÞ�= ffiffiffiffiffi

20
p

. Independently of the discretization time, the results from
simulations agree with the analytical value within errors.

Fig. 2 | Biased binomial method. Four realizations of the birth and death process
with constant rates defined by Eq. (18) simulated with the use of the binomial
method [Eq. (21)]. In this case, we also use different time discretizationsΔt, andfixed
N = 1000, μ = 1, and κ = 1. Note the numerical instability that shows up as wild
oscillations in the numerical trajectories for large time steps Δt = 10 (triangles), and
Δt = 3 (crosses). Otherwise, there is a good agreement between simulations and the
expected average value (continuous black line) for both Δt = 0.1, 1 (circles and
squares respectively).
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smallest computation time for a fixed desired accuracy. Moreover, we will
present a rule to discernwhether an unbiased continuous-time algorithmor
the discrete-time binomial method is more suitable for the required task.

Consider thatwe are interested in computing the average value 〈Z〉 of a
random variable Z that depends on the stochastic trajectory in a time
interval [0, T]. For example,Z could be the number of nuclei for the process
defined in Eq. (12) at a particular time t∈ [0, T]. We remark that 〈Z〉 could
also stand for the central second moment of some random variable, thus
accounting for fluctuations around somemean value. Also, the average 〈Z〉
could represent probabilities if Z is chosen to be an indicator function
(see e.g.64).

The standard approach to compute 〈Z〉 numerically generates M
independent realizations of the stochastic trajectories and measures the
random variable Z(i) in each trajectory i = 1,…,M. The average value 〈Z〉 is
then approximated by the sample mean

ZM :¼ 1
M

XM
i¼1

ZðiÞ: ð26Þ

Note that ZM itself should be considered a random variable as its value
changes from a set ofM realizations to another.

For an unbiased method, such as Gillespie, the only error ε in the
estimationof 〈Z〉byZM is of statistical nature and canbe computed from the
standard deviation of ZM, namely

ε ¼ σffiffiffiffiffi
M

p ; with σ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hZ2i � hZi2

q
: ð27Þ

The quantification of the importance of the error, for sufficiently large
M, follows from the central limit theorem50,64 using the confidence intervals
of a normal distribution:

P hZi � ε≤ZM ≤ hZi þ ε

 � ¼ 0:6827 . . . ð28Þ

It is in this sense, that one says that the standard error ε is the precision of
the estimation and writes accordingly

hZi ¼ ZM ± ε: ð29Þ

Note that, according to Eq. (27), for an unbiased method the error in
the estimation of the sample mean ZM tends to zero in the limitM→∞.

For a biased method, such as the binomial, that uses a finite dis-
cretization time Δt and generates MB independent trajectories, the
precision is altered by a factor that does not tend to zero in the limit
MB→∞. Based on the result found in the simple birth and death
example of the previous section, let us assume for now that this factor
scales linearly with the discretization time Δt and can be written as λΔt
where λ is a constant depending on the model. We will corroborate this
linear assumption for the binomial method both with calculations and
numerical simulations in the next section, and we refer to Supplemen-
tary Note 1 for a more general discussion in the case of a method with a
possible non-linear dependence. Then we can write the estimator using
the binomial method as

hZi ¼ ZMB
þ λΔt ± εB; ð30Þ

where εB ¼ σffiffiffiffiffi
MB

p and ZMB
is the sample average, Eq. (26), usingMB reali-

zations. The maximum absolute error of the biased method is then
∣λ∣Δt+ εB. Due to the presence of a bias term in the error, the only way that
the precision of the binomial method can equal the one of an unbiased
approach is by increasing the number of realizations MB compared to the
number of realizationsM of the unbiased method. Matching the values of
the errors of the unbiased and the biasedmethods,we arrive at the condition

that the required number of steps of the biased method is

MB ¼ M
jλjΔt
ε

� 1

� ��2

; ð31Þ

and the additional requirement Δt< ε
jλj (otherwise the bias is so large that it

can not be compensated by the increase in the number of realizationsMB).
What a practitioner needs is to compare the CPU times that the biased

andunbiasedmethods require to achieve the sameaccuracy ε. For the biased
method with a fixed time step Δt, the CPU time tðCPUÞB needed to generate
one stochastic trajectory is proportional to the numberof steps, TΔt, needed to
reach the final timeT and can be written asCB

T
Δt, whereCB is the CPU time

needed to execute one iteration of the binomial method. Hence the total
time required to generateMB trajectories is

tðCPUÞB ¼ CBMB
T
Δt

: ð32Þ

(Note that in massive parallel architectures, it might be possible to
obtain a sub-linear dependence of the total time with the number of reali-
zationsM. This possibility is discussed in Supplementary Note 1.)

The discretization time associated with a minimum value of the CPU
time consumption and subject to the constraint of fixed precision is
obtained by inserting Eq. (31) in Eq. (32) and minimizing for Δt (see
Supplementary Note 1). The optimal time reads:

Δtopt ¼ 1
3
ε

jλj : ð33Þ

Inserting the equation for the optimal Δt in Eq. (31), one obtains

Mopt
B ¼ 9

4
M ¼ 9

4
σ

ε

� 
2
; ð34Þ

which does not depend of λ or other parameters. Eqs. (33) and (34) have
major practical use, since they tell us how to chooseΔtopt andMopt

B to use the
binomial method to reach the desired precision ε and with minimumCPU
time usage.

Still, one important question remains. Provided thatweuse the optimal
pair (Mopt

B ,Δtopt), is the binomialmethod faster than an unbiased approach?
In order to answer this questionwefirst obtain the expectedCPU timeof the
binomial method with the optimal choice inserting Eqs.(33) and (34) in Eq.
(32):

tðCPU;optÞB ¼ 27
4
CB

jλj
ε
MT: ð35Þ

On the other hand, the CPU time needed to generate one trajectory
using the unbiasedmethod is proportional to themaximum timeT, and the
total CPU time to generateM trajectories is tðCPUÞU ¼ CUM T , whereCU is a
constant depending on the unbiased method used. The expected ratio
between the optimal CPU time consumption with the binomial method an
the unbiased approach is

α ¼ tðCPU;optÞB

tðCPUÞU

¼ 27
4
CB

CU

jλj
ε
: ð36Þ

Equaion (36) defines what we called the 27
4 rule, and its usefulness lies in the

ability to indicate in which situations the binomial method is more efficient
than the unbiased procedure (when α < 1). Also from Eq. (36) we note that
unbiased methods become the preferred option as the expected precision is
increased, i.e. when ε is reduced. We note that there is a threshold value
εTH ¼ 27

4
jλjCB
CU

for which both the unbiased and binomial methods are
equally efficient.
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Eqs. (33), (34) and (36) conform the main result of this work. These
three equations (i) fix the free parameters of the binomial method (Δt and
MB) in order to compute averages with fixed precision ε at minimum CPU
time usage, and (ii) inform us if the binomial method is more efficient than
the unbiased method. The use of these equations require the estimation of
four quantities: σ, CU, λ, and CB, which can be computed numerically with
limited efforts. While σ and λ rely solely on the process and approximation,
hence are expected to remain constant across different machines, both CU

andCB depend on themachine, but also on the programming language and
the user’s ability to write efficient codes. The standard deviation σ depends
only on the random variable Z and has to be computed anyway in order to
have a faithful estimate of the errors. As we will show in the examples of
section Numerical study, the constant λ can be obtained through extra-
polation at high values of Δt (thus, very fast implementations). Finally, the
constantsCU andCB can be determined very accurately and at a little cost by
measuring the CPU usage time of a few iterations with standard clock
routines. Furthermore, in Supplementary Note 2, we provide a detailed
discussion on the estimation of CU without the need to implement any
unbiased method. This approach offers a practical means to determine the
value of CU while avoiding the complexities associated with unbiased
methods.

We can also work with alternative rules that fix the relative error,
defined to as

εr :¼
��� hZi � ZM

hZi
���; ð37Þ

instead of the absolute error ε. To do so, we consider that the difference
〈Z〉− ZM is of order ε and replace 〈Z〉 by a rough estimation ZM. Then, we
can replace in Eqs. (33), (34) and (36)

ε≈εrjZMj; ð38Þ

wherewenote that the errors ofusingEq. (38) insteadofEq. (37) areof order
ε=ZM

� �2
. Therefore, working with relative errors result in implicit rules, in

the sense that onehas tomakea roughestimationof thequantity thatweaim
to estimate (i.e. 〈Z〉).

In the analysis of errors, the number of agentsN plays a crucial role due
to its significant impact on the magnitude of fluctuations. For instance,
when estimating average densities of individuals, andwhen the central limit
theorem applies, the standard error scales as σ ∼ 1=

ffiffiffiffi
N

p
36. The average time

Δt between updates in unbiased methods is expected to be inversely pro-
portional to N (see Supplementary Note 2). Therefore, we expect CU ~N.
Since λ is a difference between biased and unbiased estimations, it will have
the same scalingwithN as the quantity 〈Z〉 (see SupplementaryNote 3). The

constant CB depends crucially on the method used to sample binomial
random variables, and in some cases is independent of N, as discussed in
Supplementary Note 4. Therefore, when estimating average densities, we
anticipate α to decrease with increasing system size, as

α∼ 1=N; ð39Þ

making the use of biased methods more suitable as the system size grows.

Numerical study
In this section, we want to compare the performance of the Gillespie algo-
rithm (in representation of the unbiased strategies) and the binomial
method (in representation of unbiased synchronous methods). Also, we
show the applicability of the rules derived in last section to fix the optimal
values of Δt andMB, and decide whether the biased or unbiased method is
faster. We will do so in the context of the SIS model with all-to-all con-
nections and a more complex SEIR model with meta-population structure.

All-to-all SIS model. We study in this section the all-to-all connectivity,
where every agent is connected to all others and have the same values of
the transition rates. In the particular context of the SIS process, these rates
read :

wð0 ! 1Þ ¼ β
XN
j¼1

sj
N

¼ β
n
N
; wð1 ! 0Þ ¼ μ: ð40Þ

Where μ represents the rate at which infected individuals recover from
the disease and β is the rate at which susceptible individuals contract the
disease from an infected contact. The transition rates at the macroscopic
description are also easily read from the macroscopic variable itself. From
Eq. (5):

Wðn ! nþ 1Þ ¼ β
n
N
ðN � nÞ

Wðn ! n� 1Þ ¼ μ n:
ð41Þ

Themain outcome of this all-to-all setting is well known and can easily
be derived from themean-field equation for the average number of infected
individuals65,

dhnðtÞi
dt

¼ β
hni
N

ðN � hniÞ � μ hni ð42Þ

and indicates that forR0≔ β/μ > 1 there is an “active”phasewith a non-zero
stable steady-sate value 〈n〉st = (1− μ/β)N, whereas forR0 < 1 the stable state
is the “epidemic-free” phase 〈n〉st = 0 where the number of infected
individuals tends to zero with time.

In order to draw trajectories of this process with the binomial method
we use Algorithm 2 with a single class containing all agents,Nℓ =N, nℓ = n.
The probability to use in the binomial distributions is extracted from the
individual rates of Eq. (40):

Pð1;ΔtÞ ¼ 1� e�μΔt; Pð0;ΔtÞ ¼ 1� e�βðn=NÞΔt: ð43Þ
Wenote that theprobabilityP(0,Δt) in Eq. (43) that a susceptible agent

experiences a transition in a time Δt is an approximation of

1� exp � β

N

Z tþΔt

t
nðt0Þ dt0

� �
: ð44Þ

Such approximation is a good representation of the original process
when Δt is so small that n(t) can be considered as constant in t; t þ Δt½ �. In
any case, we checked both analytically (see Supplementary Note 3) and
numerically [see Fig. 3a, b] that the errors of the method still scale linearly
with the time discretization, as pointed out in section The 27

4 rule.

Fig. 3 | Scaling of errors. Panel a plots the average density hxtiB :¼ hnt iB
N of infected

individuals of the all-to-all SIS model at time t = 20 obtained using the binomial
method for different values of the discretization step Δt. The number of realizations
is MB = 100, and other parameter values are β = 4, μ = 1, N = 103, n(t = 0) = 10. The
statistical error bars are smaller than the symbol size. In accordance with Eq. (26), we
find that the average hxtiB follows a linear dependence at small Δt with slope
λ =− 0.25(1). The horizontal dashed line is the extrapolation at Δt = 0 of 〈x〉B
obtained from the linear fit (continuous line). In panel b we plot for the same case,
the relative error εr :¼ j hnt iBhnt i � 1j, using a very accurate value of hnt iN ¼ 0:7497
obtained with the so-called Gaussian approximation75, corroborating the linear
dependence with the discretization step (dashed line of slope 0.25 ×N/〈nt〉 = 0.33).
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Now, let us illustrate the relevance of choosing an appropriate dis-
cretization Δt for the binomial method. First we look for a condition on Δt
that ensures that Eq. (44) can be properly approximated by Eq. (43). Since
the average time between updates at the non-zero fixed point
WðnstÞ�1 ¼ ½2μð1� μ=βÞN��1, a heuristic sufficient condition to ensure
proper integration is tofixΔt∝ 1/N. In Fig. 4a, it is shown that this sufficient
condition indeed generates a precise integration of the process. Also in
Fig. 4a we can see that this is in contrast with the use of Δt = 1, which
provides a poor representation of the process (as claimed in40). However,
regarding the CPU-time consumption, the sufficient option performs
poorly [Fig. 4b]. Therefore, a proper balance between precision and CPU
time consumption requires to fine tune the parameter Δt. This situation
highlights the relevance of the rule derived in sectionThe 274 rule to chooseΔt
and discern if the binomial method is advantageous with respect to the
unbiased counterparts.

In Fig. 5a, we show the agreement of Eqs. (36) and (39) with results
from simulations. In this figure, the discretization step Δt and number of

realizations for the binomial method MB have been optimally chosen
according to Eqs. (33) and (34). This figure informs us that the binomial
method is more efficient than an unbiased Gillespie algorithm counterpart
for a system of size N = 103 when the target error is large, namely for
ε > 3 ⋅ 10−3, whereas the unbiasedmethod should be the preferred choice for
dealing with high precision estimators. In Fig. 5b we fix the precision and
vary the system size N to check that α is inversely proportional to N [Eq.
(39)]. Thus, the efficiency of biased methods tends to overcome unbiased
approaches as the system size grows. Both in Fig. 5a, b, we show that it is
possible to use estimations of CU without actually having to implement the
unbiased method (see Supplementary Note 2). This finding highlights the
possibility of achieving accurate results while avoiding the complexities
associated with implementing biased methods. It is relevant for the appli-
cation of the 27

4 rule that CPU time consumption is not highly dependent on
R0 (as demonstrated in Fig. 3b). Therefore, the efficiency study can be
conducted at fixedR0 values.

Meta-population SEIR model. Next, we show that our results hold in a
more complexmodel involvingmeta-population connectivity andmany-
state agents. The meta-population framework consist on C sub-systems
or classes, such that class ‘ ¼ 1; . . . ; C contains a population of Nℓ

individuals. Agents of different sub-populations are not connected and
therefore cannot interact, whereas agents within the same population
interact through an all-to-all scheme similar to the one used in section
All-to-all SIS model. Individuals can diffuse through populations, thus
infected individuals can move to foreign populations and susceptible
individuals can contract the disease abroad. Diffusion is tuned by a
mobility matrixm, being the element m‘;‘0 the rate at which individuals
from population ℓ travel to population ‘0. Therefore, to fully specify the
state of agent i we need to give its state si and the sub-population ℓi it
belongs to at a given time. Regarding the macroscopic description of the
system, the inhabitants of a population can fluctuate and therefore it is
needed to keep track of all the numbers Nℓ as well as the occupation
numbers nℓ.

In this case we examine the SEIR paradigmatic epidemic model where
agents can exist in one of four possible states: susceptible, exposed, infected,
or recovered (see e.g.44). The exposed and recovered compartments are new
additions compared to the SIS model discussed in the previous section.
These compartments represent individuals who have been exposed to the
disease but are not yet infectious, and individuals who are immune to the
disease respectively. The rates of all processes at the sub-population level are:

W‘ðS‘; E‘ ! S‘ � 1; E‘ þ 1Þ ¼ βI‘S‘=N‘;

W‘ðI‘; E‘ ! I‘ þ 1; E‘ þ�1Þ ¼ γE‘;

W‘ðI‘;R‘ ! I‘ � 1;R‘ þ 1Þ ¼ μI‘;

WðN‘;N‘0 ! N‘ � 1;N‘0 þ 1Þ ¼ m‘;‘0N‘;

ð45Þ

where Sℓ, Eℓ, Iℓ, and Rℓ denote the number of susceptible, exposed, infected,
and recovered individuals in population ℓ, respectively.

If we assume homogeneous diffusion, the elements of the mobility
matrix arem‘;‘0 ¼ m if there is a connection between subpopulations ℓ and
‘0 and m‘;‘0 ¼ 0 otherwise. Also if the initial population distribution is
homogeneous, Nℓ(t = 0) =N0, ∀ ℓ, then the total exit rate reads:

WðsÞ ¼
XC
‘¼1

β I‘
S‘
N‘

þ γ E‘ þ μ I‘

� �
þm CN0; ð46Þ

which can be expressed as a function of the occupation variables
{Sℓ, Eℓ, Iℓ,Nℓ}. In this case, the average time between mobility-events,
½mCN0��1, is constant and inversely proportional to the total number of
agents CN0. This makes simulatingmeta-populationmodels with unbiased
methods computationally expensive, as a significant portion of CPU time is
devoted to simulating mobility events. The binomial method is, therefore,

Fig. 4 | Relevance of time discretization. We plot in panel a the average density
hxtiB :¼ hnt iB

N of infected individuals of the all-to-all SISmodel at time t = 20 obtained
using the binomial method as a function of R0 ¼ β=μ for different discretization
times Δt. We take n(t = 0) = 10, μ = 1.0, N = 103, andMB = 100. Statistical error bars
are smaller than the symbol size. The estimations of the average agree within errors
forΔt = 10−3 andΔt = 10−2. However, discrepancies are found for bigger values ofΔt,
for which the systematic errors are bigger than the statistical errors. Thus, the
analysis of systematic errors should be taken into account to produce results with
fixed desired precision. In panel b, we plot the average CPU time (in seconds) per
realization which, according to Eq. (32) scales as 1/Δt. This figure evidences the need
of a fine tuning of Δt in order to avoid slow and imprecise calculations.

Fig. 5 | 27/4 rule in all-to-all SIS model. We plot in panel a the ratio between the
CPU times of the binomial and the Gillespie algorithms applied to the simulation of
an all-to-all SIS model with parameter values T = 20, μ = 1, β = 4, N = 103, and
n(t = 0) = 10 as a function of the target error ε. The dots are the results of the
numerical simulations using the binomial method with the optimal values of the
discretization step Δtopt and number of realizationsM

opt
B as given by Eqs. (33) and

(34), while the number of trajectories in the Gillespie algorithm was computed from
Eq. (27). The solid line is Eq. (36), using the values obtained from the simulations:
λ =− 0.25, CU = 7 ⋅ 10−3 s, CB = 2 ⋅ 10−6 s. With triangles we represent results from
the use of Eq. (36) with the estimation ofCU explained in Supplementary Note 2. The
dashed horizontal line at α = 1 signals where the unbiased and biased methods are
equally efficient and it crosses the data at ε

TH
¼ 27

4
jλjCB
CU

¼ 3 � 10�3. In panel b we
proceed similar to (a), but fix the precision, and vary N. Again, we fix Δt andMB to
their optimal values using Eqs. (33) and (34) respectively, and plot results from
simulations (dots), our prediction from Eq. (36) measuring λ, CU, and CB from
simulations (solid line), and Eq. (36) using our theoretical estimation of CU (tri-
angles) using Eq. B4. This plot is in agreementwith the expected scaling of α fromEq.
(39). See values of absolute CPU time consumption in Supplementary Note 5.
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the preferred strategy to deal with this kind of process (see Supplementary
Note 6 for details on how to apply the binomialmethod tometa-population
models66). However, one has to bear in mind that the proper use of the
binomialmethod requires supervising theproper valueofΔt that generates a
faithful description of the process at affordable times.

In Fig. 6 we also check the applicability of the rules derived in section
The 27

4 rule, this time in the context ofmetapopulationmodels. As in the case
of all-to-all interactions, the preferential use of the binomial method is
conditioned to the desired precision for the estimator. Indeed, unbiased
methods become more convenient as the target errors decrease.

Efficient calculation of CU and CB. In principle, the use of Eq. (36)
requires the implementation of both the unbiased and biasedmethods to
estimate the constants CU and CB. It would be preferable to devise rules
that do not require both implementations, as they can become cumber-
some for complex processes with numerous reactions. To address this
issue, we propose two approximations to Eq. (36). The first approx-
imation consists of conducting the efficiency analysis on a simpler all-to-
all system rather than on the meta-population structure, as outlined in
Supplementary Note 2. Our second proposal entirely avoids the imple-
mentation of the unbiased method, opting instead for the mean-field
estimation of CU as also described in Supplementary Note 2. In Fig. 6, we
also illustrate the concurrence between these two approximations and the
direct application of Eq. (36). Overall, Fig. 6 shows the advantage of using
the binomial method for low precision. Compared to the case of the all-
to-all interactions of section All-to-all SIS model, the required CPU-time
of the Gillespie method is very large, making it computationally very
expensive to use. Therefore, this situation exemplifies the superiority of
the binomial method with optimal choices for the discretization times
and number of realizations when dealing with complex processes.

Final implementation. Summing up, we propose the following steps to
use the results of section The 27

4 rule.

Algorithm 3. Rule 27/4

1: Estimate a target quantity, 〈Z〉, using the biasedmethodwith several
(large) values ofΔt. Plotting the estimations versus Δt, compute λ as
the slope of the linear fit [see Fig. 3a and Fig. S6 of Supplementary
Note 5 for examples].

2: Estimate CU and CB on simple all-to-all process. Alternatively,
estimate CU using deterministic mean-field calculations as in Sup-
plementary Note 2. Estimations can be done at a small system size
Ns, then CU at target system size N is recovered through
CU(N) =CU(Ns)N/Ns.

3:UseEq. (36) todiscernwhether theunbiased (forα > 1)orbiased (for
α < 1) approach are the most efficient option.

4: If the biased method is the preferred option, then use Eqs. (33) and
(34) to fix the discretization time and number of realizations
respectively.

Conclusion
This work provides useful insight into the existing debate regarding the use
of the binomial approximation to sample stochastic trajectories. The dis-
cretization time of the binomial method needs to be chosen carefully since
large values can result in errors beyond the desired precision, while low
values can produce extremely inefficient simulations. A proper balance
between precision and CPU time consumption is necessary to fully exploit
the potential of this approximation and make it useful.

We have demonstrated, through both numerical and analytical evi-
dence, that the systematic errors of the binomial method scale linearly with
the discretization time. Using this result, we can establish a rule for selecting
the optimal discretization time and number of simulations required to
estimate averages with a fixed precision while minimizing CPU time con-
sumption. Furthermore, when comparing specific biased and unbiased
implementations, we have derived a rule to identify the more efficient
option.

It is not possible to determinewhether the unbiasedor biased approach
is the best option in absolute terms. CPU time consumption varies
depending on factors such as the programming language, themachine used
for calculations, and the user’s coding proficiency. This variability is para-
metrized through the constants CU and CB in our theory. Nevertheless, we
can make general statements independent of the implementation. Firstly,
the advantageofusing the binomialmethoddependson the targetprecision:
the use of unbiased methods becomes more optimal as the target precision
increases. Second, since CPU time scaling with the number of reactions
depends on the method, biased methods tend to outperform unbiased
methods as the complexity of the model increases.

The numerical study of our proposed rules signals that the ratio of
CPU times between the unbiased and binomial methods are similar in
both all-to-all and meta-population structures. This result facilitates the
use of the rules in the latter case. Indeed, one can develop the study of
efficiency in the all-to-all framework and then use the optimal values of
the discretization time and number of realizations in the more complex
case of meta-populations.

Our work contributes to the generation of trustworthy and fast sto-
chastic simulations, crucial for many real-world applications. Future work
will focus on generalizing this approach to deal with adaptive discretizations
and address cases involving non-Poissonian processes (see e.g. ref. 67),
where unbiased algorithms are challenging to implement.

Data availability
Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.

Code availability
The codes for the different models are available at68 and are free to use
providing the right credit to the author is given.

Different binomial random number generators from different authors
were used for robustness analysis66,69–74. Check Supplementary Note 4 for
details.

Fig. 6 | 27/4 rule in meta-population SEIR model. Similar to Fig. 5 for the case of
the meta-population SEIR model with parameter values t = 7.5, γ = 1, μ = 1, β = 4.
There are C ¼ 100 subpopulations arranged in a square 10 × 10 lattice such that each
subpopulation is connected to 4 nearest neighbors (we assume periodic boundary
conditions); each subpopulation contains initiallyNℓ(t = 0) = 103 agents, ∀ ℓ. At time
zero the state of the system is I1(0) = 10, Iℓ(0) = 0 ∀ ℓ ≠ 1, Eℓ(0) = 0, Rℓ(0) = 0,
Sℓ(0) =N0− Iℓ ∀ ℓ.We have set themobility among neighboring subpopulations to a
constant valuem = 10. The discretization step and the number of trajectories of the
binomial method take the optimal values of Eqs. (33) and (34), while the number of
trajectories in the Gillespie algorithm was computed from Eq. (27). The required
constants measured from the simulations are λ = 0.045,CU = 0.12 s,CB = 1.2 ⋅ 10−4 s.
The dashed horizontal line atα = 1 signalswhere theGillespie and binomialmethods
are equally efficient and it crosses the data at ε

TH
¼ 27

4
jλjCB
CU

≈3 � 10�4. The continuous
line is the theoretical prediction Eq. (36), while circles are results from simulations.
Squares and triangles are estimations of α that avoid making simulations of the
original process. Squares where obtained through simulations of the all-to-all pro-
cess. Triangles also use the all-to-all process plus the estimation of CU using deter-
ministicmean-field equations as outlined in SupplementaryNote 2.Wenote that the
values of α are in general agreement across theory, simulations and approximations.
See fit for λ in Fig. S5 of the Supplementary Note 5.
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Supplementary Note 1. OPTIMAL TIME

In this section, we derive expressions equivalent to Eqs. (33), (34), and (36) in the main text but for arbitrary
scaling relations. First, we consider the situation in which the systematic errors of the biased method scale as an
arbitrary power of the discretization time,

⟨Z⟩ = ZMB
+ λ (∆t)

φ ± εB . (S1)

Considering this generalization is pertinent since sub-linear and super-linear scalings (φ < 1 and φ > 1 respectively)
can occur within the context of numerical methods for simulating stochastic models, for example, in the context of
the numerical integration of stochastic differential equations [51, 65]. We also consider the case in which the scaling
of the CPU time with the number of realizations can be sublinear,

t
(CPU)
B = CB (MB)

ψ T

∆t
, (S2)

and

t
(CPU)
U = CUM

ψT. (S3)

Non-trivial values for ψ could be obtained when working on massively parallel architectures like GPUs.
Since error sources can only accumulate, the only way to reduce errors in biased computations is to increase the

number of realizations (MB). The errors using a biased method equals the ones of the unbiased counterpart when

MB = M

� |λ| (∆t)
φ

ε
− 1

�−2

. (S4)

Inserting Eq. (S4) in Eq. (S2) we obtain:

t
(CPU)
B =

MCBT

∆t

� |λ| (∆t)
φ

ε
− 1

�−2ψ

. (S5)

The above equation informs about the CPU time consumption using the binomial method with a time discretization
∆t with general scaling relations. Eq.(S5) has two relative extrema. We discard one of them, (∆t)φ = ε/|λ|, since its
use would require sampling infinite-many biased trajectories [see Eq. (S4)]. The other relative extrema is a minimum
that we identify as the optimal value for ∆t:

∆topt =

�
1

1 + 2φψ

ε

|λ|

� 1
φ

. (S6)

Inserting this result in Eq. (S4) we obtain the general expression for the optimal number of realizations to be
sampled with the biased method

MB = M

�
1 +

1

2φψ

�2

. (S7)
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Lastly, the general ratio of CPU times reads

α =
t
(CPU,opt)
B

t
(CPU)
U

= (2φψ)
−2ψ

(1 + 2φψ)
2ψ+ 1

φ
CB

CU

� |λ|
ε

� 1
φ

. (S8)

Setting ψ = φ = 1, Eqs. (S6), (S7), and (S8) reduce to Eqs. (33), (34), and (36) respectively.

Supplementary Note 2. ESTIMATION AND SCALING OF THE CONSTANT C

In the main text, we use the constant CU to characterize the CPU time usage of unbiased methods,

t
(CPU)
U = CUM T. (S9)

Where M is the number of realizations and T is the simulation time at which the program stops. The constant CU

is employed in Eq.(36) to determine the relative efficiency between the biased and unbiased methods for computing
averages with fixed precision. While it is possible to measure CU with limited computational efforts, it still requires
the implementation of an unbiased algorithm. In this section, we propose estimations of CU that circumvent such
implementation, simplifying the use of Eq.(36).

A. Deterministic mean-field approximation

For the first approximation, we rewrite Eq. (S9) in terms of the average CPU time to execute one iteration with

the unbiased method (t
(CPU)
U,it ) and the average number of iterations required to simulate one trajectory of duration T

(NT ),

t
(CPU)
U = t

(CPU)
U,it NTM. (S10)

To proceed with the theoretical estimation of NT , we rewrite it as

NT =
T

⟨∆t⟩T
, (S11)

where ⟨∆t⟩T is the average time between updates of the process along a trajectory of duration T . Hence, we can
estimate the constant CU as

CU ≈
t
(CPU)
U,it

⟨∆t⟩T
. (S12)

The advantage of using Eq. (S12) comes from the fact that we can estimate t
(CPU)
U,it without implementing the

unbiased method in a program. Instead, we can measure it as the average CPU time consumption that it takes to
execute the operations involved in one iteration of the exact algorithm. Furthermore, we propose to estimate ⟨∆t⟩T
using the deterministic mean field approximation of the process,

⟨∆t⟩T =
1

T

Z T

0

1

W [n(t)]
dt. (S13)

Where W [n(t)] is the total exit rate defined in Eq. (11) evaluated in the state of the system at time t, and using
the deterministic mean-field dynamics. For example, in the case of the all-to-all SIS model,

W [n(t)] = n(t)

�
β
N − n(t)

N
+ µ

�
, (S14)
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where n(t) = Nx(t), and x(t) is the solution to

d

dt
x(t) = x(t) (β(1− x(t))− µ) , (S15)

which is

x(t) =
e(β−µ)t

R0(e(β−µ)t−1)
R0−1 + 1

x0

, (S16)

The integral in Eq. S13 for the SIS model reads

⟨∆t⟩T =
R0

2µ(R0 − 1)
−


1− e(1−R0)µT

�
(R0(x0 − 1) + 1)

(R0 − 1)2(R0 + 1)µTx
0

− R0

2(R0 + 1)2µT
log

�
(R0 − 1)(R0(x0 − 1)− 1)

(R0 + 1)eT−R0µT (R0(x0
− 1) + 1)− 2R0x0

�
, (S17)

with

R0 =
β

µ
. (S18)

For the particular case of systems with stable or meta-stable states, like the SIS all-to-all model, one can further
approximate this derivation and evaluate Eq. (S13) in the non-zero stable state (nst).

lim
T→∞

⟨∆t⟩T =
1

W [nst]
=

R0

2µ(R0 − 1)
. (S19)

In Fig. S1, we show the agreement between Eqs. (S17) and (S19) and results from simulations.

FIG. S1. Estimation of ⟨∆t⟩T for different values of the final time T using the mean-field formula from Eq. (S17) (solid line),
its long-time limit (Eq. (S19) in dashed line), and measures from simulations (dots and errorbars noting the 97.5th porcentile).
Parameters: N = 1000, β = 2, µ = 1.

In order to produce the dotted line in Fig. 5-(a), we used Eqs. (S12) and (S17), where we measured t
(CPU)
U,it as the

time needed to generate one uniform random number, make its logarithm, execute an if- statement, and carry the
arithmetic operations that it would require to compute the exit rate.

1. Scaling with system size

As we can see through this example, it is generally true that the total exit rate is extensive in the number of agents,
this is, we can express the exit rate as
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W [n(t)] = Nf [x(t)] , (S20)

where f [x(t)] is an intensive function. Putting all together, the CPU time with the unbiased method reads

t
(CPU)
U =

t
(CPU)
U,it TN
R T

0
f−1(t)dt

MT, (S21)

where we can identify an estimation of CU ,

CU =
t
(CPU)
U,it TN
R T

0
f−1(t)dt

. (S22)

Therefore, we expect that CU scales, at least, linearly with the system size. Depending on the process, the scaling

could be super-linear, since t
(CPU)
U,it depends on the number of reactions, which could depend itself on the number of

agents. Thus, it is possible to do the efficiency study on small systems (of size Ns << N) and then scale to the values
of CU at big N with

CU (N) = CU (Ns)N/Ns (S23)

2. SEIR model

Eq. (S12) can also be used to approximate the constant CU for multidimensional models, like the SEIR model of
section Meta-population SEIR model. The deterministic mean-field equations of the SEIR model read





d
dts(t) = −βs(t)i(t),
d
dte(t) = βs(t)i(t)− γe(t),
d
dt i(t) = γe(t)− µi(t),
d
dtr(t) = µi(t).

(S24)

With s := S/N , e := E/N , i := I/N , r := R/N , and N = S + E + I + R. One more time, we can estimate the
average time between updates with the integral

⟨∆t⟩T =
1

T

Z T

0

1

W [s(t)]
dt. (S25)

Where the total exit rate for the all-to-all SEIR model reads

W [s(t)] = W [S,E, I, R] = βI
S

N
+ γE + µI. (S26)

The triangles in Fig. 6 where obtained integrating Eqs. (S24) and (S25) numerically with N = 1000, β = 4,
γ = 1,µ = 1, S(t = 0) = N − 10, I(t = 0) = 10, E(t = 0) = R(t = 0), T = 2.4.

B. All-to-all approximation

The second approach that we propose can be applied to meta-population models. The idea is to assess efficiency,
as outlined in section The 27

4 rule, but based on a simplified all-to-all model with N agents. Thus ignoring the meta-
population structure. For the case of the SEIR model described in section Meta-population SEIR model, the rates for
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its associated all-to-all version read,

W (S,E → S − 1, E + 1) = β I S/N,

W (I, E → I + 1, E +−1) = γ E,

W (I, R → I − 1, R+ 1) = µ I,

N = S + E + I +R. (S27)

Let CATA
U and CATA

B be the constants appearing in Eq. (36) for the all-to-all setting, then we approximate the
constants CU and CB associated to the meta-population system as

CB ≈ CATA
B CU ≈ CATA

U

N

N0 CU
, (S28)

where we assume the scalings with the system size for CU and CB discussed respectively in Supplementary Note
2, and Supplementary Note 4. In this way, one substitutes the implementations on a meta-population system with
CU ·N0 agents with much simpler all-to-all implementations with N agents.

Supplementary Note 3. ESTIMATION AND SCALING WITH SYSTEM SIZE OF THE CONSTANT λ

Consider a SIS model with all-to-all interactions, and let n(t) be the number of infected individuals at time t. The
probability that a susceptible agent will change its state at time t′ ∈ [t, t+∆t] is:

P (0,∆t)exact = 1− exp

 
− β

N

Z t+∆t

t

n(s)ds

!
. (S29)

In the context of the binomial approximation, this probability is approximated by:

P (0,∆t) = 1− exp

�
− β

N
n(t)∆t

�
. (S30)

The difference between Eqs. (S29) and (S30) is the error associated to the use of Eq. (S30) instead of Eq.(S29). We
call this difference ∆P .

∆P = P (0,∆t)exact − P (0,∆t) = exp

�
− β

N
n(t)∆t

�
− exp

 
− β

N

Z t+∆t

t

n(s)ds

!
. (S31)

Considering ∆t small, we can approximate

Z t+∆t

t

n(s)ds ≈ n(t)∆t+ ṅ(t)
∆t2

2
. (S32)

Where ṅ(t) = d
dtn(t). Inserting the above expression in Eq. (S31), we obtain

∆P = exp

�
− β

N
n(t)∆t

�
− exp

�
− β

N

�
n(t)∆t+ ṅ(t)

∆t2

2

��

= exp

�
− β

N
n(t)∆t

��
1− exp

�
− β

N
ṅ(t)

∆t2

2

��
≈ βṅ(t)

2N
∆t2. (S33)

If we make use of the binomial method, the faithful increment in the number of infected individuals should be ∆nexact,
a random variable drawn from a binomial distribution B (n(t), P (0,∆t)exact). Instead, we use a random variable ∆n
drawn from the approximate distribution B (n(t), P (0,∆t)). The difference between the mean values of the exact
random variable and the actual one used in the numerical method is

⟨∆n⟩exact − ⟨∆n⟩ = n(t)∆P ∼ ∆t2. (S34)
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If we aim to reach a final simulation time T , the accumulated error of using the approximation Eq. (S31) for a
number of iterations proportional to T/∆t scales as ∆P/∆t ∼ ∆t. This scaling is corroborated numerically in Fig. 3
of the main text.

Therefore, the estimation for λ associated to the number of infected individuals scales linearly with N ,

λ ∼ O(N), (S35)

whereas the errors over densities [x(t)] are independent of N ,

λ ∼ O(1), (S36)

Supplementary Note 4. SCALING OF THE CONSTANT CB

The scaling of the constant CB with the parameters of the process depends crucially on the algorithm used to
generate binomial samples, i.e. random numbers B(N, p) from a binomial distribution [Eq.(14)] of parameters N
and p, representing the number of trials and the probability of success, respectively. There are several algorithms to
generate B(N, p) numbers and which one is more convenient (i.e. faster, using less CPU execution time) depends on
the specific values of the parameters N and p and, to a lesser extent, on the machine and programming language used.
Generally speaking, the methods split in two families: those whose CPU time grows linearly on N and those whose
CPU time is independent of N . Amongst the first, we mention the numerical inversion of the cumulative distribution
function, and the iteration of N Bernouilli processes each one with success probability p. Amongst the second set of
methods, the simplest one is a rejection algorithm in which a value selected from a Lorenztian distribution is accepted
with a carefully chosen probability. A more sophisticated inversion method whose execution time is also independent
of N is discussed in Ref. [73]. Other methods whose execution time is independent of the system size exploit the
relation between binomial and beta distributions (see e.g. [76]).

One tries to profit from the best of each family by choosing methods whose time scale linearly with N up to a
threshold number of trials in which it is more profitable to switch to an N -independent algorithm for sufficiently large
N . In general, the criterion when to choose from one method to another is determined by a threshold value ΘTH of
the product Np (the expected value of the binomial random variable). Furthermore, as a significant fraction of the
time needed for the binomial method of Algorithm 2 is spent in the generation of the random numbers, the above
strategy translates into an approximately linear dependence of the time CB , which depends on the discretization time
∆t through Eq. (8) and on the number of individuals N through the dependence of the occupation numbers nℓ, up
to the threshold and constant afterwards,

CB(N,∆t) =

(
c1N if Np(N,∆t) < ΘTH.

c2 otherwise ,
(S37)

where c1 and c2 are constant numbers depending on the generation method used.
We have considered three different random number generator for the binomial distribution:

(i) The first one is the built-in Python function numpy.random.binomial [72] that uses the method based on the
inverse of the cumulative function up to ΘTH = 30, and the sophisticated algorithm discussed in [73] otherwise. We
have used this generator in all the simulations of the paper.
(ii) The second is the Fortran routine ZBQLBIN available as part of the randgen package at [68]. This method is
based on sampling from a beta distribution which can be related to the target binomial [76].
(iii) Based on the rejection method implemented in the Fortran routine BNLDEV of Ref. [74] and our own timing tests
we have written a Fortran routine iran bin which uses the following scheme [70]:

• If p < 0.15 and pN < 15 use inversion of the cumulative distribution.

• if p > 0.15 and N < 100 use repetition of Bernouilli processes.

• In all other cases use the routine BNLDEV based on rejection.

In Fig. S2 we plot the value of α defined in Eq. (35) for each of the three generators applied to the metapopulation
SEIR model described in section Meta-population SEIR model with the same parameters as used in Fig. 6. Defining
the threshold error value ϵTH as the minimum value for which the binomial method is more efficient than the Gillespie
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algorithm, i.e. the one for which α = 1, we find that ϵTH[generator (iii)] < ϵTH [generator (ii)] < ϵTH [generator (ii)],
showing that generator (iii) is the most efficient one. In the same figure, we also plot the theoretical line associated
to Eq. (36), which, overall offers a good approximation to the numerical values. Some discrepancies can be attributed
to the dependence of CB on the error ε. To clarify this point, we plot in Fig. S3 the values of CB estimated from the
same simulations used in Fig. S2 as

CB =
∆topt

T

t
(CPU)
B

Mopt
B

, (S38)

where t
(CPU)
B is the time needed to do the biased simulations used in Fig. S2.

In Fig. S4 we show the absolute times used to generate dots in Fig. S2 with both the biased and unbiased methods.
This figure illustrates that all methods operate within similar temporal scales.

FIG. S2. The figure shows the values of α [Eq. (36)] for different target precisions ε, and the different algorithms explained in
the text to extract binomial samples (Methods i), ii), and iii)). The process is the metapopulation SEIR model described in
section Meta-population SEIR model with the same parameters as used in Fig. 6. Dots are the results from simulation while
the continuous line is the prediction of our theory.

FIG. S3. The figure shows the values of CB measured from simulations corresponding to dots in Fig. S2.

Supplementary Note 5. AUXILIARY FIGURES

A. Absolute CPU time consumption

In this section, we present the absolute time counterparts of Fig. 5 instead of its ratio, denoted as α.

B. Scaling of errors SEIR
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FIG. S4. The figure shows the absolute times measured from simulations corresponding to dots in Fig. S2 for both the unbiased
method (squares) and the biased method (x).

FIG. S5. Average CPU time consumption using the binomial and Gillespie methods (x and squares respectively). The tasks
for (a) and (b) correspond to those of Figs. 5 (a) and (b) respectively.
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FIG. S6. Average density ⟨xt⟩B :=
⟨It⟩B
N0M

of infected individuals of the metapopulation SEIR model at time t = 7.5 obtained

using the binomial method for different values of the discretization step ∆t. The number of realizations is MB = 100, and
other parameter values are the same of Fig. 6. Circles are the results from simulations and the continuous line is a linear fit
whose slope is λ = −0.045(1). The horizontal dashed line is the extrapolation at ∆t = 0 of ⟨x⟩B obtained from the linear fit.
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Supplementary Note 6. BINOMIAL METHOD ON META-POPULATION FRAMEWORK

In this section, we show how to adapt the binomial method (algorithm 2) to the case of meta-population models with
SEIR dynamics (described in section Meta-population SEIR model). Let Sℓ(t), Eℓ(t), Iℓ(t), and Rℓ(t) be, respectively,
the number of susceptible, exposed, infected, and recovered individuals in subpopulation ℓ = 1, . . . , C at time t. These
occupation numbers fully characterize the state of the system. Note that the total number of agents in class ℓ at time
t is Nℓ(t) = Sℓ(t) + Eℓ(t) + Iℓ(t) + Rℓ(t). We partition mobility and epidemic events and perform separate updates
for each of them to sample the future state {Sℓ(t+∆t), Eℓ(t+∆t), Iℓ(t+∆t), Rℓ(t+∆t)}ℓ=1,...,C .

-Mobility: The first step involves the calculation, for all sub-populations, of the number of agents who move within
a time interval ∆t. These quantities, denoted by {∆Xℓ}ℓ=1,...,C , for X = S,E, I, R, are extracted from binomial

distributions∆Xℓ ∼ B (Xℓ(t), p
out
ℓ ), with poutℓ := 1−e−∆t

P
j mℓ,j . Then, traveling agents have to be distributed among

neighboring sub-populations. We call ∆Xℓ,ℓ′ , respectively, the number of agents from compartment X entering in sub-
population ℓ′ coming from ℓ. Those numbers are sampled from the multinomial distributions, M(∆Xℓ; {pℓ,ℓ′}ℓ′=1,...,C)

with pℓ,ℓ′ :=
mℓ,ℓ′P
j mℓ,j

. The general multinomial distribution M(N ; p1, . . . , pk) is defined by the probabilities

P (n1, . . . , nk) =

�
N

n1 · · ·nk

�
pn1
1 . . . pnk

k . (S39)

One possible method for sampling numbers {n1, . . . , nk} from a multinomial distribution is by using an ordered
sequence of binomial samples [75].

ni ∼ B


N −

X

j<i

nj ,
pi

1−Pj<i pj


 , i = 1, . . . , k. (S40)

At this point, the state of the system is updated with the mobility events:

Xℓ(t) ← Xℓ(t) +
X

j

∆Xj,ℓ, (S41)

but time is not yet increased, as the changes due to epidemic dynamics still need to be accounted for.

-Epidemics: Once agents have been reallocated according to the mobility dynamics [Eq. (S41)], occupation numbers
are updated following the epidemic rules in [Eq. (45)]. To do so, we extract the binomial numbers:

∆nℓ,S→E ∼ B

�
Sℓ(t), 1− exp

�
−β

Iℓ(t)

Nℓ(t)
∆t

��
,

∆nℓ,E→I ∼ B

Eℓ(t), 1− e−γ∆t

�
,

∆nℓ,I→R ∼ B

Iℓ(t), 1− e−µ∆t

�
, (S42)

The new state of the system reads,

Sℓ(t+∆t) = Sℓ(t)−∆nℓ,S→E ,

Eℓ(t+∆t) = Eℓ(t) +∆nℓ,S→E −∆nℓ,E→I ,

Iℓ(t+∆t) = Iℓ(t) +∆nℓ,E→I −∆nℓ,I→R,

Rℓ(t+∆t) = Rℓ(t) +∆nℓ,I→R. (S43)

Finally, time is updated t → t+∆t.
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