
System-size expansion of the moments of a master equation
A. F. Peralta, and R. Toral

Citation: Chaos 28, 106303 (2018); doi: 10.1063/1.5039817
View online: https://doi.org/10.1063/1.5039817
View Table of Contents: http://aip.scitation.org/toc/cha/28/10
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1908776651/x01/AIP-PT/Chaos_ArticleDL_0618/Chaos_1640x440Banner_2-18.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Peralta%2C+A+F
http://aip.scitation.org/author/Toral%2C+R
/loi/cha
https://doi.org/10.1063/1.5039817
http://aip.scitation.org/toc/cha/28/10
http://aip.scitation.org/publisher/


CHAOS 28, 106303 (2018)

System-size expansion of the moments of a master equation
A. F. Peraltaa) and R. Toral
IFISC (Instituto de Física Interdisciplinar y Sistemas Complejos), Universitat de les Illes Balears-CSIC, 07122
Palma de Mallorca, Spain

(Received 11 May 2018; accepted 2 July 2018; published online 4 October 2018)

We study an expansion method of the general multidimensional master equation, based on a system-
size expansion of the time evolution equations of the moments. The method turns out to be more
accurate than the traditional van Kampen expansion for the first and second moments, with an error
that scales with system-size similar to an alternative expansion, also applied to the equations of
the moments, called Gaussian approximation, with the advantage that it has less systematic errors.
Besides, we analyze a procedure to find the solution of the expansion method and we show different
cases where it greatly simplifies. This includes the analytical solution of the average value and fluc-
tuations in the number of infected nodes of the SIS epidemic model in complex networks, under the
degree-based approximation. Published by AIP Publishing. https://doi.org/10.1063/1.5039817

In all areas of science, there are situations in which the
description of the system under study requires the consid-
eration of probability theory. In these cases, a determinis-
tic analysis of the occurring processes may be inadequate
or lacking of the relevant information sought. Master
equations are an extensively used mathematical tool to
deal with such situations. We consider here and com-
pare different methods to find approximate solutions to
a general master equation. The presented techniques are
applied to different cases, including models of gene tran-
scription and epidemics, for which one is able to obtain
highly accurate results.

I. INTRODUCTION

Rarely the repetition of an experiment in Biology will
yield exactly the same result. That does not mean that a math-
ematical description of biological experiments is not possible,
but that an element of randomness has to be introduced in
the theory from the very beginning. Despite the general belief
that physical theories are always deterministic and predictive,
the truth is that Statistical and Nonlinear Physics is a well
established discipline that incorporates randomness in the
description of a physical system at a very fundamental level.
Since the pioneering works of Ludwig Boltzmann, Albert Ein-
stein, Paul Langevin, and many others, it has become clear
that macroscopic laws can emerge from a probabilistic frame-
work that takes into account the unavoidable elements of
randomness, arising from our lack of knowledge of the exact
microscopic description, including all forces between parti-
cles and their initial conditions. After more than a century and
a half of expertise, we have learnt that beyond the predictions
of the average values of the outcome of an experiment, the
fluctuations around the mean values and the probability distri-
bution of the possible outcomes bear much information about
the microscopic mechanisms that underlie the process under
scrutiny. For example, if the distribution of, say, the number

a)Electronic mail: afperalta@ifisc.uib-csic.es

of a given type of particles (mRNA molecules, enzymes, etc.)
produced inside a cell follows a Poisson distribution, or alter-
natively, if the mean value is equal to the variance, then it
is likely that the particles are produced and degraded both at
constant rates and independently of each other.1

The stochastic description in biology is used at many
different levels:2 ranging from the production of complex
molecules inside the cell to the population dynamics of
competing species, as in the predator-prey environment,
through the enzymatic reactions,3 the excitation of neurons,4,5

the neurochemical synaptic connection and neuronal signal
transduction,6,7 the regulation of the sleep-wake cycle,8–10 the
effect of drugs in the treatment of illnesses, random fluctu-
ations in genetic networks,11 intercellular calcium spiking,12

gene transcription,13–16 the spread of epidemics,17 and so
on.18 In all these cases, an adequate description begins with
a “model” that takes into account as much of the phenomenon
as one wants to describe, but trying not to include too many
details, so avoiding a level of mathematical complexity that
could make the model unsolvable. For example, when study-
ing the spread of an epidemic, we might assume that the
contagion between two individuals is a stochastic process that
occurs at some constant rate, but at the same time disregard
the dependence of the contagion rate with the age, sex, or
other features of the individuals; we might assume that all
individuals have the same number of possible contacts poten-
tially leading to a contagion or that some individuals have
more risks than others; we can assume a constant mobility
of people or that some move more and farther than others, etc.

The selection of the features one wants to include consti-
tutes the modeling part that, given the stochastic ingredients
already mentioned, requires a mathematical treatment in terms
of master equations, or equations for the probability of the
different outcomes of the process, for example, the number
of infected people at a given time. Once the master equation
has been derived, the more technical aspect of finding its solu-
tion begins. Although a complete analytical solution is usually
very difficult and one must resource to numerical methods,19

there are some analytical techniques to extract information
from the master equation concerning either the probability
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function itself or, at a not so detailed level, the moments and
correlations of the stochastic variables.

Amongst these analytical techniques, one of the most
powerful ones is the so-called system-size expansion initiated
by van Kampen in his seminal work.20 It is based on a sin-
gular expansion around a small parameter, usually the inverse
of the volume or the total number of particles. The expansion
is in most cases carried out only at first order, the so-called
linear noise approximation. Given its technical subtleties, the
van Kampen expansion might not be very intuitive to apply
in a particular problem. There have been recent approaches
in which the main results of the expansion are derived in
alternative ways, using, for example, a stochastic differen-
tial equation approach21,22 or a direct Gaussian approximation
scheme.23,24 It is the intention of this paper to show how the
van Kampen expansion can be formulated at the level of the
exact, but not yet closed, equations for the moments and cor-
relations. Besides reproducing the main results of the van
Kampen expansion, the proposed method yields, at the same
order of the expansion, a better convergence for the moments.

The outline of the paper is as follows: in Sec. II, we
explain the main lines of the van Kampen original method as
expanded for multidimensional systems in Ref. 25. In Sec. III,
we perform the system-size expansion directly as a method to
close the equations for the moments, compared to the previous
van Kampen method and also the Gaussian approximation.
In Sec. IV, we show how to find the general solution of the
equations for the correlations and corrections to the moments,
together with relevant simplifications and analytical solutions
for specific cases. In Sec. V, we apply and compare the differ-
ent proposed methods to two low dimensional examples, the
autocatalytic reaction and a model of gene transcription, while
in Sec. V C, we explain how the proposed method applies to
the SIS epidemic model in complex networks. We end with a
summary and conclusions in Sec. VI.

II. THE EXPANSION OF THE MASTER EQUATION

Our starting point is a general stochastic process in which
a set of M integer random variables x ≡ (x1, . . . , xM ) can
undergo a set of K random processes defined by the vec-
tors �(ν) ≡ (�

(ν)
1 , . . . , �(ν)

M ), with ν = 1, . . . , K being the index
of the process. In process ν, the variables change according
to xi → xi + �

(ν)
i with a rate W (ν)(x). In Sec. V, we will be

considering specific examples of stochastic processes, but for
now we keep a very general notation. The probability P(x; t)
that the state of the system is x at time t obeys the master
equation:19,20

∂P(x; t)

∂t
=

K∑
ν=1

(
M∏

i=1

E
−�

(ν)
i

i − 1

) [
W (ν)(x)P(x; t)

]
. (1)

Here, Ei is the step operator acting on any function f [x] of the
variables xi as

E�
i [f (x1, . . . , xi, . . . , xM )] = f (x1, . . . , xi + �, . . . , xM ). (2)

The step operator can also be written formally as Ei = e∂xi ,
where ∂xi f = ∂f

∂xi
, as it can be readily seen from the Taylor

expansion

f (x + �) =
∞∑

k=0

∂kf

∂xk

�k

k!
=

∞∑
k=0

1

k!

[
�

∂

∂x

]k

f = [
e�∂x

]
f . (3)

The celebrated van Kampen’s �-expansion20 is one of the
most powerful methods to find an approximate solution to the
complicated partial differential master equation (1). Although
the method can handle more complicated cases, in its sim-
plest form, it can be used when the rates can be written as
W (ν)(x) = �w(ν)

( x
�

)
in terms of a large parameter � and w(ν)

functions of the intensive variables x
�

(see Appendix A for the
necessary modification for a more complex functional form of
the rates). In most cases, � is proportional to the total volume
V or the number of particles N , hence the name system-size
expansion with which this technique is also known. It rests
upon the expectation that the dynamical variables x(t) will
follow a deterministic trajectory whose contribution scales as
� plus some random deviations from this trajectory that scale
as �1/2. This ansatz is based on the law of large numbers, but
its validity has to be checked consistently at the end of the
calculation. For example, the ansatz does not work near a crit-
ical point where anomalous fluctuations exist and a modified
hypothesis is then needed.

Using this ansatz, one makes the following change of
variables x = �φ + �1/2ξ or xi = �φi + �1/2ξi in coordi-
nates. Here, φ = (φ1, . . . , φM ) is a set of time-dependent func-
tions to be determined self-consistently, and ξ = (ξ1, . . . , ξM )

are the new set of random variables. All the statistical prop-
erties of x as determined by the probability function P(x; t)
are to be obtained from the statistical properties of ξ deter-
mined by the probability function �(ξ ; t) related to P(x; t) by
�(ξ ; t) = �M/2P(x; t), as �M/2 is the Jacobian of the change
of variables x → ξ .

To find the partial differential master equation satisfied by
�(ξ ; t), one makes a systematic expansion of the step operator
and the rates in powers of �−1/2. For the step operator, one
uses that ∂xi = �−1/2∂ξi , which leads to

M∏
i=1

E
−�

(ν)
i

i =
M∏

i=1

e−�
(ν)
i �−1/2∂ξi = e−�−1/2�(ν)· �∇ξ

= 1 − �−1/2�(ν) · �∇ξ + 1

2
�−1(�(ν) · �∇ξ )

2 + O(�−3/2),

(4)

where �(ν) · �∇ξ = ∑M
i=1 �

(ν)
i ∂ξi . The rates are expanded as

W (ν)(x) = �w(ν)(x/�) = �w(ν)(φ + �−1/2ξ)

= �w(ν)(φ) + �1/2
M∑

j=1

∂φj w
(ν)(φ)ξj + O(�0)

= �w(ν)(φ) + �1/2ξ · �∇ξ w(ν)(φ) + O(�0), (5)



106303-3 A. F. Peralta and R. Toral Chaos 28, 106303 (2018)

where ∂φj w
(ν)(φ) is the partial derivative

∂w(ν)(φ)

∂φj
. For the

time derivative of P(x; t), we obtain

∂P

∂t
= ∂

∂t

[
�−M/2�(ξ)

∣∣
ξ=�−1/2x−�1/2φ

]

= �−M/2

[∑
i

∂�

∂ξi

(
−�1/2 dφi(t)

dt

)
+ ∂�

∂t

]
. (6)

Replacing Eqs. (4)–(6) in Eq. (1) and equating powers of �,
we have

dφi

dt
= 	i, (7)

and the Fokker-Planck equation

∂�(ξ ; t)

∂t
=

∑
i,j

∂

∂ξi

[
Bijξj� + 1

2
Gij

∂�

∂ξj

]
, (8)

with

	i(φ) =
∑

ν

�
(ν)
i w(ν)(φ), (9)

Bij(φ) = −
∑

ν

�
(ν)
i ∂φjw

(ν)(φ) = −∂φj	i, (10)

Gij(φ) =
∑

ν

�
(ν)
i �

(ν)
j w(ν)(φ). (11)

Here, 	i is the drift term that determines the time evolution
of the deterministic part φi, B = {Bij}i,j=1,...,M is the Jacobian
matrix of � = (	1, . . . , 	M ) (defined with a minus sign),
and G = {Gij}i,j=1,...,M is an additional matrix that can be cal-
culated using �(ν) and w(ν)(φ). Note that Eq. (8) is linear
in �(ξ ; t), which allows us to obtain closed time evolution
equations for the moments 〈ξk〉 and correlations

Cij ≡ 〈ξiξj〉 − 〈ξi〉〈ξj〉 = �−1
[〈xixj〉 − 〈xi〉〈xj〉

]
≡ �−1σij, (12)

where σij = 〈xixj〉 − 〈xi〉〈xj〉 is the correlation matrix of the
original xi variables. Multiplying both sides of Eq. (8) by
the desired quantity, i.e., ξi or ξiξj, and integrating over all

variables
∫

dξ = ∫ [∏M
j=1 dξj

]
, we obtain

d〈ξi〉
dt

= −
∑

k

Bik〈ξk〉, (13)

dCij

dt
= −

∑
k

[
CjkBik + CikBjk

] + Gij. (14)

In matrix notation C = {Cij}i,j=1,...,M , we have

d〈ξ〉
dt

= −B〈ξ〉, (15)

dC
dt

= −CBᵀ − BC + G. (16)

If we assume the existence of a steady-state of Eq. (7),
obtained by setting � = 0, and 〈ξ 〉st = 0, then the correlation

matrix Cst in the steady-state satisfies

CstB
ᵀ
st + BstCst = Gst, (17)

in terms of the steady-state matrices Bst, Gst. As shown in
Ref. 20, the steady-state probability distribution has a Gaus-
sian shape

�st(ξ) =
√

|Cst|
(2π)M

e− 1
2 ξᵀ ·C−1

st ·ξ . (18)

In the time-dependent case, the probability distribution obeys
also a Gaussian expression

�(ξ , t) =
√

|C|
(2π)M

e− 1
2 (ξ−〈ξ 〉)ᵀ ·C−1·(ξ−〈ξ 〉), (19)

provided the initial condition is also a Gaussian distribution
(this includes as a limiting case the Dirac-delta or dispersion-
free initial conditions).

This ends our brief summary of the van Kampen expan-
sion method. In Sec. IV, we derive following Ref. 25 a
general solution of Eq. (17) for the steady-state correlations
Cst obtained by diagonalizing matrix Bst. In the same section,
we consider some simplifications and the explicit solution in
some cases of interest. In those cases in which Bst cannot
be diagonalized, we propose in Appendix B a very efficient
recursive numerical algorithm to obtain Cst. Before that, we
explain in Sec. II alternative approaches to the van Kampen
expansion, whose starting point is the derivation of equations
for the first and second moments obtained directly from the
master equation, without the need to use the Fokker-Planck
approximation.

III. THE EXPANSION OF THE EQUATIONS FOR THE
MOMENTS

Let us focus now on the time evolution of the first 〈xi〉
and second 〈xixj〉 moments, defined as

〈xi(t)〉 =
∫

dx xiP(x; t), (20)

〈xi(t)xj(t)〉 =
∫

dx xixjP(x; t), (21)

with
∫

dx = ∫ [∏M
j=1 dxj

]
. Multiplying both sides of the mas-

ter equation (1) by xi or xixj and integrating over
∫

dx, the
quantities 〈xi〉 and 〈xixj〉 are shown to satisfy the following
evolution equations:

d〈xi〉
dt

=
K∑

ν=1

�
(ν)
i 〈W (ν)〉, (22)

d〈xixj〉
dt

=
K∑

ν=1

[
�

(ν)
i �

(ν)
j 〈W (ν)〉 + �

(ν)
i 〈xjW

(ν)〉 + �
(ν)
j 〈xiW

(ν)〉
]

.

(23)
Except for a very few functional dependence forms of the
rates W (ν)(x), these equations are not closed as the right-
hand-side contains higher order moments 〈xi1xi2 xi3 . . .〉 for
which one must write down evolution equations leading to a,
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usually infinite, hierarchy of equations which, with very few
exceptions, cannot be solved.

In order to close this infinite hierarchy of equations,
we will describe two alternative methods: (i) the Gaus-
sian approximation and (ii) a system-size type of expansion,
inspired by the van Kampen method, but performed directly at
the level of the equations for the moments Eqs. (22) and (23),
instead of the master equation (1).

A. The Gaussian approximation

As the method has been recently exposed by one of the
authors, we just highlight here its main ingredients and refer to
Ref. 23 for further details. The Gaussian approximation con-
sists in writing any higher order moment 〈xi1xi2 xi3 . . .〉 that
might appear in Eqs. (22) and (23) as a function of the two first
moments 〈xi〉 and 〈xixj〉, assuming that x distributes as a Gaus-
sian random variable, a fact that is based on the van Kampen
expansion as explained in Sec. II. For a single variable xi, the
Gaussian distribution comes fully specified if we know its first
and second moments. Higher order moments are derived from
these two lower order moments. For example, as needed in the
examples of Sec. V, we have 〈x3

i 〉 = 3〈x2
i 〉〈xi〉 − 2〈xi〉3. For

multi-dimensional distributions, any average 〈xi1xi2 xi3 . . .〉
can be written in terms of the two first moments 〈xi〉 and 〈xixj〉
(or the correlations σij = 〈xixj〉 − 〈xi〉〈xj〉) using the Isserlis26

theorem, also known as Wick’s theorem.27 For example,
〈x2

i xj〉 = 〈x2
i 〉〈xj〉 + 2〈xi〉〈xixj〉 − 2〈xi〉2〈xj〉.

As shown in the detailed study of Ref. 23, this method can
be more precise than the traditional van Kampen expansion.
For example, while the error of the van Kampen expansion
in the variables

(〈xi〉, 〈xixj〉, σij
)

is of order (�0, �1, �1/2),
respectively, the Gaussian approximation provides errors that
scale at most as (�−1/2, �1/2, �1/2). This is a substantial
improvement for

(〈xi〉, 〈xixj〉
)

and the same scaling for σij,
although the numerical results of Ref. 23 indicate that the
system-size expansion of the master equation gives smaller
errors for σij than the Gaussian approximation. One problem
of the Gaussian approximation is that for very low �, the
method may not converge. This occurs because the variables
x are considered to be Gaussian, and thus unbounded, when
actually they are restricted to be positive x > 0.

B. System-size expansion

Our intention here is to close the hierarchy of Eqs. (22)
and (23) using a system-size expansion similar to the one
used in Sec. II to reduce the master equation to a Fokker-
Planck equation. To this end, we propose an expansion of the
stochastic term as ξ = a + �−1/2b + O(�−1), where a and b
are stochastic variables. We can determine the order of this
approximation for the average value and correlations using
x = �φ + �1/2a + �0b + O(�−1/2):

〈xi〉 = �φi + �1/2〈ai〉 + �0〈bi〉 + O(�−1/2), (24)

〈xixj〉 = �2φiφj + �3/2
(
φi〈aj〉 + φj〈ai〉

)
+ �1

(〈aiaj〉 + φi〈bj〉 + φj〈bi〉
) + O(�1/2), (25)

σij = �C̃ij + O(�1/2), (26)

where we define C̃ij ≡ 〈aiaj〉 − 〈ai〉〈aj〉. If we introduce
Eqs. (24) and (25) in Eqs. (22) and (23) and equate powers
of �, we obtain

dφi

dt
= 	i, (27)

d〈ai〉
dt

= −
∑

j

Bij〈aj〉, (28)

d〈bi〉
dt

= −
∑

j

Bij〈bj〉 + 1

2

∑
j,k

[
C̃jk + 〈aj〉〈ak〉

]
∂2
φj,φk

	i,

(29)

dC̃ij

dt
= −

∑
k

[
C̃jkBik + C̃ikBjk

]
+ Gij. (30)

Note that Eq. (30) for the correlations C̃ij coincides
with Eq. (14) satisfied by Cij, and hence, both correla-
tions are identical. However, and this is the key point,
had we not included the term �0bi in the expansion,
then Eq. (30) would have contained an additional incor-

rect term 1
2

∑
k,q〈akaq〉

[
φi∂

2
φk ,φq

	j + φj∂
2
φk ,φq

	i

]
. Addition-

ally, the equations for φi and 〈ai〉 coincide with Eqs. (7)
and (13), but, and this is the improvement of this method,
we obtain an additional equation (29) for the average value
of the higher order correction. According to Eqs. (24)–(26),
the accuracy of this method is (�−1/2, �1/2, �1/2) for(〈xi〉, 〈xixj〉, σij

)
, respectively, the same scaling of the errors

one finds in the Gaussian approximation discussed before,
being therefore more accurate for

(〈xi〉, 〈xixj〉
)

than the
system-size expansion of the master equation. Beyond the
scaling with system size of the errors, we will compute numer-
ically in the examples of the next sections the prefactors of
these scaling laws, and we will show that the actual values
of the errors are substantially reduced using the expansion
method based on the equations for the moments developed
in this section.

1. Higher order expansions

It is of course possible to include higher order terms in the
expansion x = �φ + �1/2a + �0b + �−1/2c + O(�−1). One
finds then the following expressions for 〈xi〉, 〈xixj〉, σij:

〈xi〉 = �φi + �1/2〈ai〉 + �0〈bi〉
+ �−1/2〈ci〉 + O(�−1), (31)

〈xixj〉 = �2φiφj + �3/2(φi〈aj〉 + φj〈ai〉) + �1(〈aiaj〉 + φi〈bj〉
+ φj〈bi〉) + �1/2

(
φi〈cj〉 + φj〈ci〉 + 〈aibj〉

+〈ajbi〉
) + O(�0), (32)

σij = �(〈aiaj〉 − 〈ai〉〈aj〉) + �1/2
(〈aibj〉 + 〈ajbi〉 − 〈ai〉〈bj〉

−〈aj〉〈bi〉
) + O(�0). (33)

If we introduce the new ansatz in the equations for
the moments Eqs. (22) and (23), we obtain the same
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Eqs. (27)–(30) and additional time evolution equations for 〈ci〉
and 〈aibj〉:

d〈ci〉
dt

= −
∑

j

Bij〈cj〉 +
∑

j,k

〈ajbk〉∂2
φj,φk

	i

+ 1

6

∑
j,k,q

〈ajakaq〉∂3
φj,φk ,φq

	i, (34)

d〈aibj〉
dt

+ d〈ajbi〉
dt

= −
∑

k

Bjk (〈biak〉 + 〈aibk〉)

−
∑

k

Bik
(〈bjak〉 + 〈ajbk〉

)

+ 1

2

∑
k,q

〈aiakaq〉∂2
φk ,φq

	j

+1

2

∑
k,q

〈ajakaq〉∂2
φk ,φq

	i +
∑

k

∂φk Gij〈ak〉,

(35)

with the particularity that they depend also on the third
moment 〈aiajak〉. In order to find the time evolution equation
for 〈aiajak〉, we need to relate it with the third moment 〈xixjxk〉
〈xixjxk〉 = Pijk

[
�3φiφjφk + �5/2φiφk〈aj〉

+�2
(
φiφj〈bk〉 + φi〈ajak〉

)
+�3/2

(
φiφj〈ck〉 + φi〈ajbk〉 + 〈aiajak〉

)] + O(�1),
(36)

where the permutation operator Pijk adds to the expression
inside the brackets any permutation of the indices i, j, k, which
leads to a different result (e.g., Pijk

[
φiφk〈aj〉

] = φiφk〈aj〉 +
φiφj〈ak〉 + φjφk〈ai〉). Using now the exact evolution equation
that follows from the master equation

d〈xixjxk〉
dt

=
K∑

ν=1

Pijk

[
�

(ν)
i �

(ν)
j �

(ν)

k 〈W (ν)〉 + �
(ν)
i 〈xjxkW (ν)〉

+�
(ν)
i �

(ν)
j 〈xkW (ν)〉

]
, (37)

we obtain

d〈aiajak〉
dt

= Pijk

[
−

∑
q

Bkq〈aiajaq〉 + Gij〈ak〉
]

. (38)

According to Eqs. (31)–(33), the method is of order
(�−1, �0, �0) for the variables (〈xi〉, 〈xixj〉, σij). In the steady
state, it is 〈ci〉st = 〈aibj〉st = 〈aiajak〉st = 0, which means that
these higher order corrections are zero and the accuracy of the
method of Sec. III B is higher than expected.

Higher order expansions applied directly to the master
equation (not in the equations for the moments) are dis-
cussed in Ref. 20. In that case, the van Kampen ansatz
x = �φ + �1/2ξ is kept as a change of variables, but we take
into account the further orders of Eqs. (4) and (5) such that the
probability is split as �(ξ ; t) = �0(ξ ; t) + �−1/2�1(ξ ; t) +
O(�−1) and Eq. (8) is only valid for �0(ξ ; t). This higher
order van Kampen expansion has the advantage of giving an
equation for the probability distribution �(ξ ; t), but it is again

less accurate (�−1/2, �1/2, �0) for
(〈xi〉, 〈xixj〉, σij

)
compared

to the expansion of the moments, for 〈xi〉, 〈xixj〉. In general,
one can conclude that any higher order system-size expan-
sion will be one order superior for 〈xi〉, 〈xixj〉 when performed
in the equations for the moments and the same order for σij,
compared to the equivalent expansion of the master equation.

IV. SOLUTION OF THE EQUATION FOR
CORRELATIONS

We now describe a general procedure as developed in
Ref. 25 to solve Eq. (17) and find Cst that, however, requires
the diagonalization of matrix Bst. In those cases in which
the diagonalization is not possible or it shows difficulties,
we present in Appendix B an alternative recursive numeri-
cal scheme that can provide Cst very efficiently and with high
precision.

Let us assume, then, that it is possible to write Bst =
PDP−1, with D being a diagonal matrix and P being the
matrix of change of basis, whose columns are the correspond-
ing eigenvectors. Replacing Q = P−1Cst (Pᵀ)−1 and F =
P−1Gst (Pᵀ)−1 (note that Qᵀ = Q and Fᵀ = F) in Eq. (17),
we arrive at

QD + DQ = F. (39)

In index notation, QijDj + DiQij = Fij, leading to

Qij = Fij

Di + Dj
. (40)

Once we have Q, we obtain Cst = PQPᵀ. It is also possible to
write the solution in index notation as

Cst
ij =

∑
k,q

Gst
kq

∑
n,m

PinP−1
nk PjmP−1

mq

Dn + Dm
. (41)

The corrections to the mean value 〈b〉st can also be deter-
mined. Applying the linear transformation that diagonalizes
the Jacobian matrix, we define g = P−1b, u = P−1φ, and
U ≡ P−1�. Multiplying both sides of Eq. (29) by P−1(· · · ),
taking into account that ∂φi = ∑

k P−1
ki ∂uk , and setting the time

derivative equal to zero in the steady-state, we obtain

〈gi〉st = 1

2Di

∑
k,q

Qkq∂
2
uk ,uq

Ui. (42)

One can now undo the transformation 〈b〉st = P〈g〉st.
Alternatively, a more useful equation for the average

value 〈bi〉st can also be obtained if we determine first �i ≡
1
2

∑
k,q Cst

kq∂
2
φk ,φq

	i, and then Eq. (42) can be rewritten as

〈gi〉st = 1
Di

∑
n P−1

in �n, which leads to

〈bi〉st =
∑
n,m

PinP−1
nm�m

Dn
. (43)

The above expressions, besides an explicit solution of
Eqs. (17) and (29) that can be used both analytically or numer-
ically, provide a close relation between the solution of the
linearization of the deterministic dynamics equation (7) and
the correlations between variables. Basically, if one solves the
linear dynamics, finding the steady-state correlations requires
much less effort than approaching the problem Eq. (17)
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directly as a system of equations. In some cases of interest, the
solution can be simplified or directly found with this method.
Next, we show an interesting collection of these cases.

A. Degenerate eigenvalues

The star node dynamics correspond to a situation
where all the eigenvalues are equal Di = D, ∀i, such that
any arbitrary vector v is an eigenvector of Bst with the
same eigenvalue, i.e., Bstv = Dv. In this case, Q = 1

2D F =
1

2D P−1Gst (Pᵀ)−1, and the expression Cst = PQPᵀ becomes

Cst = P
[

1

2D
P−1Gst (Pᵀ)

−1
]

Pᵀ = 1

2D
Gst. (44)

This is, the correlation matrix is equal to the G-matrix rescaled
with 1/2D.

A more complex case is when there is a non-degenerate
eigenvalue D1 with associated eigenvector vᵀ

1 = (u1, . . . , uM )

and, additionally, the rest of the eigenvectors v2 form a star
node, Bstv2 = D2v2 with an eigenvalue D2 of degeneracy
M − 1, in the plane nᵀ · v2 = 0, where nᵀ = (n1, n2, . . .) is a
normal vector to the plane. The matrix P fulfills then Pi1 = ui,
∀i,

∑
i niPij = δ1jnᵀ · v1, and we can determine the first row of

the inverse matrix as P−1
1j = nj

nᵀ ·v1
. This information is enough

to simplify Eq. (41). If we consider separately the terms n = 1,
m = 1, we find

Cst
ij =

∑
k,q

Gst
kq

(
uiujP

−1
1k P−1

1q

2D1

+ujP
−1
1q (δik − uiP

−1
1k ) + uiP

−1
1k (δjq − ujP

−1
1q )

D1 + D2

+ (δik − uiP
−1
1k )(δjq − ujP

−1
1q )

2D2

)

= uiuj
F11

2D1
+ αiuj + αjui − 2F11uiuj

D1 + D2

+ Gst
ij − αiuj − αjui + F11uiuj

2D2
, (45)

with F11 = ∑
k,q P−1

1k P−1
1q Gst

kq and αi ≡ ∑
k P−1

1k Gst
ik . In general,

if Bst has degenerate eigenvalues, it is natural to split the sum
of Eq. (41) for the indices n, m that have common eigenvalues
Dn = D, Dm = D′ and the analysis is greatly simplified.

Using this same trick in Eq. (43), the corrections to the
average value 〈bi〉st are

〈bi〉st = �i

D2
+ D2 − D1

D1D2
ui

∑
j

�jP
−1
1j . (46)

B. Time scale separation

If the linearization of the dynamics reveals an eigenvalue
D1 which is very small compared to the rest Di � D1, an
approximate solution is directly found. This corresponds to
a situation where the trajectories bend following the slow
eigendirection v1. In this case, we have that Q11 = F11

2D1
� Qij

and then

Cst
ij =

∑
k,q

PikQkqPjq ≈ Pi1Q11Pj1. (47)

We only have to compute the first column Pi1 and the first
row P−1

1i , and we avoid tedious matrix multiplications. Note
that the correlations are the product of the coordinates of the
eigenvector v1 times the global value Q11. In this same limit,
Eq. (42) reduces to

〈gi〉st = Q11

2Di
∂2

u1
Ui, (48)

and the leading correction to the average value is 〈bi〉st =
Pi1〈g1〉st.

C. Conservation laws

It may happen that not all the variables are independent,
i.e., the variables are related by what we will assume a set
i = 1, . . . , Mc of linear relations

∑M
j=1 Hijxj = Ci, where Ci are

a given set of constants. For example, this could be the sto-
ichiometric relations of the different species involved in a
chemical reaction.

If the master equation respects these relations, we
expect the constants not to change during any process
xj → xj + �

(ν)
j and then

∑M
j=1 Hij�

(ν)
j = 0, or equivalently

multiplying by w(ν)(φ) and summing over all ν we have∑M
j=1 Hij	j = 0. Consequently, the matrix Bst fulfills the

relations
∑M

j=1 HijBst
jk = 0, for any k. Comparing this to the

equations for the eigenvalues P−1Bst = DP−1, in index nota-
tion

∑M
j=1 P−1

ij Bst
jk = DiP

−1
ik , we can associate nil eigenvalues

Di = 0, and also Hij = P−1
ij , for i = 1, . . . , Mc.

For two values i = 1, . . . , Mc and j = 1, . . . , Mc, the
denominator of Eq. (40) vanishes but also does the numerator:

Fij =
∑
k,l

P−1
ik Gst

klP
−1
jl

=
∑

ν

(∑
k

P−1
ik �

(ν)

k

)(∑
l

P−1
jl �

(ν)

l

)
w(ν) = 0, (49)

and then we can set Qij = 0. Thus, the matrix Q has a block
of zeros that corresponds to the set of conserved quantities by
the master equation.

V. EXAMPLES

In order to test the accuracy and differences of the meth-
ods, we will apply them to some examples: the autocatalytic
reaction, already considered in Ref. 20, a model of gene
transcription,13 and the susceptible-infected-susceptible (SIS)
model of epidemic spreading. For each example, we will
consider the van Kampen system-size expansion of the mas-
ter equation (vKE) as given by Eqs. (7), (15), and (16), the
Gaussian approximation as explained in Ref. 23, and the
system-size expansion carried out at the level of the equations
for the moments (SSM) given by Eqs. (27)–(30).
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A. Autocatalytic reaction

Consider the following chemical reaction:

A
α−→ X , 2X

γ−→ Y . (50)

With rate α molecules of substance X are created out of a
reservoir of size �; with rate γ , when two molecules meet,
they react to give a molecule of substance Y . We only consider
one variable, the number n of molecules of X . This variable
can change by any of the two processes outlined in (50). In the
notation of Sec. II, we have two processes ν = 1, 2, creation
and reaction. The changes in the variable n and the rate of
the processes are �(1) = 1 (one particle is created from the
reservoir), W (1) = �α and �(2) = −2 (two particles disappear

when they react), W (2) = γ

�
n(n − 1), where we assume that

the production rate is proportional to �, and the probability of
two X -particles to meet is inversely proportional to �. Using
Eqs. (22) and (23), we find equations for the first and second
moments 〈n〉, 〈n2〉:

d〈n〉
dt

= �α − 2γ

�
(〈n2〉 − 〈n〉), (51)

d〈n2〉
dt

= �α(1 + 2〈n〉) + 4γ

�

(−〈n3〉 + 2〈n2〉 − 〈n〉) , (52)

which are not closed due to the presence of 〈n3〉 on the right-
hand-side of Eq. (52). In the Gaussian approximation, we
use the replacement 〈n3〉 = 3〈n2〉〈n〉 − 2〈n〉3 and Eqs. (51)
and (52) become closed. When using the system-size expan-
sion, either at the level of the master equation or the equations
for the moments, we need to determine 	 and G given by
Eqs. (9) and (11) in the one-variable case:

	 = α − 2γφ2, (53)

G = α + 4γφ2. (54)

The equations for the correlations [Eq. (30)] involve the
first derivative ∂φ	 = −4γφ and the corrections to the aver-
age value Eq. (29) the second derivative ∂2

φ	 = −4γ . The
rate W (2) does not strictly follow the scaling form W (2) =
�w(2)(n/�) as we have instead W (2) = �γ ·

[(
n
�

)2 − n
�2

]
,

one needs to redo the expansions taking into account the cor-
rect presence of the different � terms. In Appendix A, we
show that the only effect is to add an extra term � = 2γφ to

the right-hand side of Eq. (29), and the original van Kampen
expansion is not modified.

In Fig. 1, we plot the results of the time evolution of 〈n〉,
〈n2〉, σ 2 for the three different proposed expansion methods,
compared to the numerical results of the Gillespie algorithm
applied to Eq. (50). For the average value 〈n〉 [Fig. 1(a)], we
have SSM > Gaussian > vKE in order of accuracy; for the
second moment 〈n2〉 [Fig. 1(b)], Gaussian >SSM > vKE; and
for the variance σ 2 [Fig. 1(c)], SSM = vKE > Gaussian. This
confirms our expectations that the expansion of the moments
and the Gaussian approximation work better than the standard
van Kampen expansion for the first two moments. In Fig. 2,
we plot the errors of 〈n〉, 〈n2〉, σ 2 as a function of the volume
�, which are compatible with the scaling relations derived
in Sec. III. For the second moment 〈n2〉 [Fig. 2(b)], there is
the particularity that the error of the Gaussian approximation
scales as �−1, better than expected, which is a particular fea-
ture of the autocatalytic reaction due to some cancellations.
Although the error of the Gaussian approximation and SSM
scale equivalently, one can appreciate in Figs. 2(a) and 2(c)
that SSM presents smaller systematic errors. We also observe
the predicted problems of the Gaussian approximation for
extremely low system sizes, where the errors soar or the
method does not even converge.

B. Gene transcription

We study now the model of gene transcription proposed
in Ref. 13. In that model, the system is described by two
variables nr and np, respectively, the number of molecules of
mRNA and proteins (p). The model is constructed as follows:
(1) with rate kr, a fraction of DNA (D) is copied into a mRNA
molecule; (2) with rate kp, a molecule of mRNA is translated
into a protein; (3) mRNA degrades with rate γr; and (4) protein
degrades with rate γp. Schematically in the reaction notation
this can be written as

D
kr−→ mRNA, mRNA

kp−→ p,

mRNA
γr−→ ∅, p

γp−→ ∅. (55)

We have then four processes ν = 1, 2, 3, 4, transcription,
translation, degradation of mRNA, and degradation of pro-
tein, with changes in the variables and rates: �(1)

r = +1,
W (1) = �kr; �(2)

r = −1, �(2)
p = +1, W (2) = nrkp; �(3)

r = −1,

FIG. 1. Time evolution of 〈n〉, 〈n2〉, and σ 2 shown in panels (a), (b), and (c), respectively, for the autocatalytic reaction (50) with parameters α = 1, γ = 1/2,
� = 10. The black dots are the numerical results of the Gillespie algorithm, averaged over 109 trajectories, compared to the results of the standard van Kampen
expansion (red lines), the Gaussian approximation (purple), and the system-size expansion of the moments (green, coincident with the red lines in the case of
the variance).
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FIG. 2. Error of the methods in the steady-state state of variables 〈n〉st, 〈n2〉st, and σ 2
st shown in panels (a), (b), and (c) respectively, for the autocatalytic reaction

(50) with parameters α = 1, γ = 1/2, as a function of the volume �. The standard van Kampen expansion (red lines) displays errors that scale as (�0, �1, �0);
the Gaussian approximation (purple) as (�−1, �−1, �0); and the system-size expansion of the moments (green) as (�−1, �0, �0). The exact solution with which
the error has been computed can be found in Ref. 20.

W (3) = nrγr; �(4)
p = −1, W (4) = npγp. The model considers

the auto-regulation of proteins by assuming that the transcrip-
tion rate is a nonlinear decreasing function of the concen-

tration of proteins, such as kr(np) = kmax
r

1 + [np/(�kd)]m
, where

kmax
r , kd , and m are parameters to be determined by fitting to

experimental results. Using Eqs. (22) and (23), we find the
time evolution equations of the first and second moments and
cross-correlations of nr, np:

d〈nr〉
dt

= �〈kr(np)〉 − (
γr + kp

) 〈nr〉, (56)

d〈np〉
dt

= kp〈nr〉 − γp〈np〉,
d〈n2

r 〉
dt

= �〈(2nr + 1)kr(np)〉 + (γr + kp)
(〈nr〉 − 2〈n2

r 〉
)

,

d〈n2
p〉

dt
= kp(〈nr〉 + 2〈nrnp〉) + γp

(
〈np〉 − 2〈n2

p〉
)

,

d〈nrnp〉
dt

= �〈npkr(np)〉 − (γr + γp + kp)〈nrnp〉

+ kp
(〈n2

r 〉 − 〈nr〉
)

. (57)

Applying the Gaussian approximation in this case would
be cumbersome because of the appearance of non-trivial
moments such as 〈nrkr(np)〉, given the functional form of
kr(np). For the system-size expansion, however, we only have
to construct � and G using Eqs. (9) and (11)

	r = kr(φp) − (
γr + kp

)
φr, 	p = kpφr − γpφp, (58)

Grr = kr(φp) + (
γr + kp

)
φr, Gpp = kpφr + γpφp, (59)

Grp = Gpr = −kpφr. (60)

The deterministic steady-state is determined by the equation

kr(φ
st
p ) = γp

(
1 + γr

kp

)
φst

p with φst
r = γp

kp
φst

p , which has to be

solved numerically in general. The solution of the procedure
Eqs. (27) and (30) for this model is plotted in Fig. 3. We appre-
ciate good agreement in comparison to numerical simulations,
with an increasing accuracy as � increases. The corrections
to the average values 〈br〉, 〈bp〉, coming from the system-size
expansion of the moments Figs. 3(a) and 3(b), reduce the dis-
crepancies of the bare deterministic solution of the standard
van Kampen expansion.

C. The SIS epidemic model

A relevant example, where one can directly apply
the methods presented in Sec. IV A to obtain analytical
results, is the susceptible-infected-susceptible (SIS) epidemic
model.28,31 In this model of epidemic spreading, we have a
population of size N ≡ � such that each member of the popu-
lation can be susceptible to the disease, S, or infected, I. With
a rate ε, an outbreak is created in the system and some individ-
uals get infected. Infected individuals can spread the disease
to the neighbors with which they have contact, with rate λ.
Eventually, infected individuals recover and become suscep-
tible again with rate β = 1, which is taken as unit of time for
simplicity. Each individual has contact with an integer number
k ∈ (kmin, kmax) of people to whom the disease can be trans-
mitted. This number k, called degree, is heterogeneous within
the population N and one can define the number Nk of peo-
ple with k contacts, and the associated fraction pk = Nk/N .
For what comes next, it is useful to also define the averages
μm = ∑

k∈(kmin, kmax) pkkm, with short notation μ1 = μ. Using
the reaction description, one can portray the model as

Sk
ε−→ Ik , Sk + Ik′

λ−→ Ik + Ik′ , Ik
1−→ Sk . (61)

We define the description variables x = (xkmin , . . . , xkmax) as
the number of infected individuals with k = kmin, . . . , kmax

contacts. By lumping together the first two reactions of (61),
there are two main processes: either a susceptible person (with
k contacts) becomes infected or it recovers, depending on its
present state. In our general notation, a process is identified
by the double index ν = (s, k) with s = 1 (infection) or s = 2
(recovery) and k = kmin, . . . , kmax, with associated changes in
the variables �

(1,k′)
k = δkk′ and �

(2,k′)
k = −δkk′ . The total rate at

which these processes happen can be calculated as

W (1,k) = (Nk − xk)

(
ε + λk

∑
k′

xk′k′

μN

)
, W (2,k) = xk .

(62)

Here,
∑

k′
xk′ k′
μN is the global fraction of contacts connected

to the infected nodes such that the total infection rate of a
k-individual is λ times its number of contacts, k, times the

“probability” that a contact is infected, i.e.,
∑

k′
xk′ k′
μN .

If the network of contacts is quenched, i.e., the peo-
ple with whom one interacts is fixed, Eq. (62) is only an
approximation29 of the real process Eq. (61), known as
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FIG. 3. Time evolution of 〈nr〉, 〈np〉,
σ 2

r , and σ 2
p shown in panels (a), (b),

(c), and (d) respectively, for the gene
transcription model (55) with parame-
ters kmax

r = 3, kd = 1, kp = 10, γr = 1,
γp = 2, m = 10. The black dots are
the numerical results of the Gillespie
algorithm for two different volumes � =
10 (circles) and � = 50 (triangles), aver-
aged over 107 trajectories. The results
of the system-size expansion φr, φp, Crr,
Cpp are plotted as red lines, while the
blue (� = 10) and green (� = 50) lines
include the corrections to the average
value 〈br〉/�, 〈bp〉/�.

degree-based approach or heterogeneous mean field.30,31 The
reason why this is an approximation lies already in the selec-
tion of the description variables xk . The correlations of the
(infected or recovered) state of any two people are expected
to depend only on their degrees k, k′ and not on the detailed
structure of the network of contacts (whether these two peo-
ple are in actual contact or not). If we consider instead an
annealed network, i.e., at each elementary time step, the
neighbors of each person are shuffled in the population, the
neighborhood-dependence effect vanishes and the correla-
tions depend only on the degree, thus making Eq. (62) exact,
see Refs. 32 and 33.

Applying the regular procedure Eqs. (9) and (11),
we find

	k = −φk + (pk − φk) (ε + λk�) , (63)

Gkk′ = δkk′ [φk + (pk − φk) (ε + λk�)] , (64)

with � ≡ ∑
k

φkk
μ

.
The steady-state solution fulfills 	k = 0, which leads to

φst
k = pk

ε + λk�st

1 + ε + λk�st
, (65)

�st =
∑

k

pkk

μ

ε + λk�st

1 + ε + λk�st
. (66)

One can solve (numerically) the self-consistent equation (66)
and then determine φst

k by Eq. (65). In Fig. 4(a), we plot
φst ≡ ∑

k φst
k , which corresponds to the deterministic solution

of the global fraction of infected individuals. For ε > 0, there
is a stable solution φst > 0 that monotonically increases with
the infection rate λ. For ε = 0, one can identify a critical λc

(epidemic threshold) that we will determine later, that sep-
arates the healthy phase φst = 0, λ < λc, from the endemic
phase φst > 0, λ > λc. The Jacobian B-matrix, the G-matrix,
and the second partial derivatives of 	k evaluated at this
stable solution read as

Bst
kk′ = δkk′

(
1 + ε + λk�st

) − λpkk

1 + ε + λk�st

k′

μ
, (67)

Gst
kk′ = δkk′2pk

ε + λk�st

1 + ε + λk�st
, (68)

∂2
φk′ ,φk′′ 	k = −λk

μ

(
δkk′′k′ + δkk′k′′) . (69)

FIG. 4. For the SIS model (61), we plot φst ≡ ∑
k φst

k , χ st ≡ ∑
kk′ Cst

kk′ , and 〈b〉st ≡ ∑
k〈bk〉st shown in panels (a), (b), and (c), respectively, as a function of the

infection rate λ, obtained by solving Eqs. (27)–(30) taking a power-law distribution of contacts pk ∼ k−2.5 with kmin = 5 and kmax = 100. Colors correspond to
different values of ε = 10−1, 10−2, 0 as indicated in the legend.
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FIG. 5. For the SIS model (61), we
plot the rescaled average value [panels
(a) and (c)] and variance [panels (b) and
(d)] of the number of infected individuals
x ≡ ∑

k xk as a function of the infection
rate λ. The system size is fixed � = 100
and ε = 10−2, while two different dis-
tribution of contacts are used: [panels
(a) and (b)] a heterogeneous distribution
pk ∼ k−2.5 with kmin = 5 and kmax = 10
and [panels (c) and (d)] a homogeneous
distribution pk = δk,20. Dots correspond
to numerical simulations using the Gille-
spie algorithm for the SIS model on
a single quenched network of contacts,
while lines are the theoretical predictions
obtained using Eqs. (27)–(30).

In Figs. 4(b) and 4(c), we show the results of solving Eqs. (29)
and (30) with the proposed algorithm of Appendix B. The
global fluctuations of the number of infected nodes is mea-
sured by χ st ≡ ∑

kk′ Cst
kk′ . For ε > 0, it increases with λ until

it reaches a maximum and then decreases, whereas for ε = 0,
we have χ st = 0 for λ < λc and χ st > 0 for λ > λc with a
finite jump discontinuity at λc. Similar results are displayed
for the correction to the average value 〈b〉st = ∑

k〈bk〉st, which
is always negative 〈b〉st < 0 and, in this case, it has an infinite
jump discontinuity at ε = 0, λ = λc.

In Fig. 5, we plot the results of simulations of the SIS
model Eq. (61) in two given quenched networks of contacts,
constructed by taking a finite sample � = 100 of the distri-
bution pk ∼ k−2.5 or pk = δk,20 and connecting individuals at
random afterwards, as described in Ref. 34. The matching of
the simulations with the theoretical results of the expansion
methods is acceptable with some discrepancies. There are two
sources of error that can explain this discrepancy, one is the
approximation introduced when defining the rates Eq. (62),
the degree-based approach, and the second one is the effect
of finite �. The first source contributes the most for the low
dense heterogeneous case μ = 6.78, as one can appreciate
how the correction 〈b〉st/� in Fig. 5(a) slightly improves the
result of the average value. For highly dense μ = 20 homo-
geneous networks, however, one can see in Fig. 5(c) how
the finite-size correction greatly improves the deterministic
result φst.

1. The degenerate limit

There is an interesting limit for which one can find an
analytical solution, namely, �st ≈ 0 which requires ε � 1. If
we expand Eq. (66) to third order in powers of �st and explore
the solution, we find

�st = ε

1 − λ
λc

, λ < λc, (70)

�st = ε
λ
λc

− 1
+ μ2

2

μμ3

(
λ

λc
− 1

)
, λ > λc, (71)

where λc = μ

μ2
. This corresponds to the lowest order in

O(ε) and it will be accurate only when �st ≈ 0, that is to

say ε �
∣∣∣1 − λ

λc

∣∣∣. In this limit, Eqs. (65), (67), and (68)

simplify to

φst
k = pk

(
ε + λk�st

)
, (72)

Bst
kk′ = δkk′ − λpkk

k′

μ
, (73)

Gst
kk′ = δkk′2pk

(
ε + λk�st

)
. (74)

Instead of directly diagonalizing the Jacobian, we will per-
form an equivalent calculation by solving the linearization of
the dynamics φk = φst

k + δk , � = �st + θ , that fulfill dδk
dt =

− ∑
k′ Bst

kk′δk′ , this is

dδk

dt
= −δk + λpkkθ . (75)

Summing
∑

k
k
μ

dθ

dt
= (−1 + λ/λc) θ , (76)

and then D1 =
∣∣∣1 − λ

λc

∣∣∣ is an eigenvalue of the system35 and

θ(t) = θ0e−D1t. Introducing this in Eq. (75), we have

δk = Cke−t + θ0λcpkke−D1t, (77)

and then the other eigenvalue is D2 = 1. The scenario in this
case is equivalent to what we explained in Sec. IV A, where
now from Eq. (77) we have vᵀ

1 = (pkminkmin, . . . , pkmaxkmax)

and the normal vector to the star node plane is nᵀ =
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(kmin, . . . , kmax), with nᵀ · v1 = μ2. Introducing Pk1 = pkk,∑
k kPkk′ = μ2δ1k′ , and P−1

1k = k/μ2 in Eq. (45), we have

Cst
kk′ = pkpk′kk′ F11

2D1
+ pk′k′αk + pkkαk′ − 2F11pkkpk′k′

D1 + D2

+ Gst
kk′ − pk′k′αk − pkkαk′ + F11pkkpk′k′

2D2
, (78)

with

F11 =
∑
kk′

k

μ2

k′

μ2
Gst

kk′ = 2

μ2

(
ε + λ

μ3

μ2
�st

)
, (79)

αk =
∑

k′

k′

μ2
Gst

kk′ = 2
pkk

μ2

(
ε + λk�st

)
. (80)

From Eq. (78), it is straightforward to obtain a closed expres-
sion for the global χ st = ∑

kk′ Cst
kk′ that we will not write

down for reasons of brevity. For λ = 0, it leads to χ st = ε,

the known variance of the Bernoulli process S
ε
�
1

I for ε � 1.

For ε = 0 and λ → λc, there is time-scale separation and only
survives the first term of Eq. (78) leading to the value at the

jump discontinuity χ st = μ2

μ2
.

The corrections to the average value 〈bk〉st can be calcu-
lated as described in Sec. IV. The inhomogeneous term �k

reads

�k = 1

2

∑
k′,k′′

Cst
k′k′′∂2

φk′ ,φk′′ 	k = −λk
∑

k′

k′

μ
Cst

kk′ , (81)

which can be obtained from Eq. (78). Using Eq. (46), we have

〈bk〉st = �k

D2
+ pkk

μ2

D1 − D2

D1D2

∑
k′

k′�k′ . (82)

For λ = 0, we have 〈bk〉st = 0, while for ε = 0 and λ → λc,
the term 1/D1 dominates and 〈b〉st = ∑

k〈bk〉st = −μμ3
μ2

2

1
λ
λc

−1
,

which diverges at λc in accordance with the results shown in
Fig. 4(c).

VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied two different expansion
methods of a general multidimensional master equation: (i)
the traditional van Kampen’s � expansion and (ii) the system-
size expansion of the moments, and we have compared them
altogether to an alternative expansion called Gaussian approx-
imation. The traditional van Kampen expansion is based
on the splitting of the description variables of the master
equation as x = �φ + �1/2ξ and focusing on the probabil-
ity distribution of ξ . The Gaussian approximation, described
in detail in Ref. 23, assumes, based on the results of the van
Kampen expansion, that the variables x follow a Gaussian dis-
tribution and gives an explicit recipe for the closure of the
equations of the moments. Finally, the system-size expansion
that we propose here assumes that the variables can be split
as x = �φ + �1/2a + �0b + · · · in terms of new stochastic
variables a, b, . . . and replace this expansion on the exact evo-
lution equations for the moments and correlations 〈xi〉, 〈xixj〉,
etc. We find that the system-size expansion of the moments
that recovers the results of the van Kampen expansion for

the correlations σij is always one order more accurate in �1/2

for the first and second moments 〈xi〉, 〈xixj〉. At the lowest
order, the errors of the van Kampen expansion scale at most
as (�0, �1, �1/2) for (〈xi〉, 〈xixj〉, σij), while for the expan-
sion of the moments scale as (�−1/2, �1/2, �1/2), in a similar
way to the Gaussian approximation. Although the errors of the
Gaussian approximation and the expansion of the moments
scale equivalently, we show that the latter displays less sys-
tematic errors and can be applied without any singularities for
small system sizes. This has been shown with numerical and
theoretical results throughout the paper, with the application
to some examples of relevance: the autocatalytic reaction, a
model of gene transcription, and the SIS epidemic model on
networks.

Additionally, we have explored different algorithms to
solve the general set of equations for the correlations and
first corrections to the average values, coming out of the
expansion method. In some cases of interest, it is possible to
obtain analytical results of the correlation matrix and finite-
size corrections, that is when the dynamics show degenerate
eigenvalues. The SIS model is one of these cases under some
limits of the parameters, for which we have been able to
obtain closed expressions of the average number of infected
individuals and fluctuations.
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APPENDIX A: THE EXPANSION FOR MORE GENERAL
RATES

Let us consider a more general rate formulation

W (ν)(x) = �w(ν)
( x
�

)
+ �0w(ν)

1

( x
�

)
, (A1)

with the addition of an extra term as in the example of
Sec. V A. The van Kampen expansion of the master equation
is not modified, as this extra term appears as O(�0) in the
expansion Eq. (5), which is neglected. In the expansion of the
moments Eqs. (22) and (23), however, we have the new term
�i ≡ ∑

ν �
(ν)
i w(ν)

1 (φ), O(�0) of Eq. (22) and, φj�i + φi�j,
O(�1) of Eq. (23). This modification leads to the same set
of Eqs. (28) and (30) but different Eq. (29)

d〈bi〉
dt

= −
∑

j

Bij〈bj〉 + 1

2

∑
k,q

〈akaq〉∂2
φk ,φq

	i + �i. (A2)
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APPENDIX B: NUMERICAL SOLUTION OF EQ. (17)

We describe an implicit Euler iterative method that con-
verges very fast to the exact steady-state solution of Eq. (17).
Starting from some initial value C0 (we do not use the
subindex “st” for brevity in the notation), we propose the
implicit recursion

Cn+1 = Cn − �t (Cn+1Bᵀ + BCn+1 − G) . (B1)

Adding BCn+1Bᵀ(�t)2 on the right-hand side of Eq. (B1) and
BCnBᵀ(�t)2 on the left-hand side, one can isolate Cn+1:

Cn+1 = (1 + �tB)−1 (Cn

+�tG + (�t)2BCnBᵀ)
(1 + �tBᵀ)−1. (B2)

This method has the advantage of being very stable compared
to other integration methods; in this way, we can set �t large
enough so that the method converges in few iterations. This
is very useful for systems with a very large number of vari-
ables. Computationally, one may prefer the iterative method
Eq. (B2) than Eq. (41) to prevent divisions by zero when the
matrix B is singular and other complications. For example,
when there are conserved quantities (Sec. IV C), if the initial
value C0 respects the given set of constraints between vari-
ables, we expect, by the own structure of the algorithm, that
Cn will also respect them, avoiding in this way the problem
discussed in Eq. (49).
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