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A classical random walker is characterized by a random position and velocity. This sort of ran-
dom walk was originally proposed by Einstein to model Brownian motion and to demonstrate the
existence of atoms and molecules. Such a walker represents an inanimate particle driven by envi-
ronmental fluctuations. On the other hand, there are many examples of so-called “persistent random
walkers,” including self-propelled particles that are able to move with almost constant speed while
randomly changing their direction of motion. Examples include living entities (ranging from flagel-
lated unicellular organisms to complex animals such as birds and fish), as well as synthetic materials.
Here we discuss such persistent non-interacting random walkers as a model for active particles. We
also present a model that includes interactions among particles, leading to a transition to flocking, that
is, to a net flux where the majority of the particles move in the same direction. Moreover, the model
exhibits secondary transitions that lead to clustering and more complex spatially structured states
of flocking. We analyze all these transitions in terms of bifurcations using a number of mean field
strategies (all to all interaction and advection-reaction equations for the spatially structured states),
and compare these results with direct numerical simulations of ensembles of these interacting active
particles. Published by AIP Publishing. https://doi.org/10.1063/1.5027734

Interacting self-propelled particles have the potential to
exhibit a number of self-coordinated motions. Nature
offers many examples surprising for their beauty, such as
flocking birds or swarming fish. The keys to understand-
ing the emergence of such collective behaviors are two:
the motion of the self-propelled entities themselves and the
interaction that leads to the coordination. In this work, we
present a mathematical model for the sort of self-propelled
particles that under appropriate conditions are capable of
collective motions. This model deepens our understanding
of the emergence of collective motion in terms of the theo-
retical framework provided by nonequilibrium statistical
mechanics and nonlinear physics.

I. INTRODUCTION

Brownian motion is one of the main paradigms
of stochastic processes in equilibrium statistical physics.
Although initially Robert Brown (after whom Brownian
motion is named) speculated that there was some remaining
life in the pollen grains that he studied, he later observed the
same type of motion in dust particles. Einstein instead inter-
preted this random motion as the result of thermal fluctuations
induced by the presence of atoms and molecules colliding
with pollen grains or dust particles,1 as described by kinetic
theory.
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Einstein’s random walker represents an inanimate par-
ticle driven by environmental fluctuations. There are many
examples of non-equilibrium self-propelling units in nature.
Examples include motor proteins such as myosin2 and
kinesin,3 and even simpler plastic spheres in a conduct-
ing fluid.4 The most complex examples are probably self-
propelling living entities, ranging from simple bacteria5,6 to
more complex animal aggregation behaviors7 such as flocking
birds or swarming fish.8

From the physical point of view, these self-propelled par-
ticles are non-equilibrium entities that are able to move at an
almost constant speed in a viscous environment. If they inter-
act, they might exhibit self-organized motions. For example,
they may exhibit a net flux, where the majority of the parti-
cles move in the same direction, a behavior known as flocking.
Moreover, they can exhibit more complex spatiotemporal col-
lective motions such as the formation of traveling clusters. In
1995, Vicsek et al.9 presented the first theoretical evidence of
a transition to flocking, proposing a model that has become
a paradigm of active matter. The model of Vicsek et al. is
based on a stochastic dynamics, where each particle moves in
two dimensions at a constant speed in a random direction cho-
sen at discrete times. That is, the particles execute a random
walk in velocity space and at each velocity move ballistically
in position space. The selection of these stochastic directions
of motion is determined by the average velocity in a vicin-
ity around each active particle. This dependence models the
interactions among particles. As a result of these interactions,
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the system exhibits a transition to flocking. A few months after
Vicsek’s publication, Toner and Tu10 proposed a continuum
hydrodynamic-like model for the transition to flocking. They
claimed that their theory describes a large universality class
of microscopic rules, including the theory of Vicsek et al. (see
Ref. 11, for an extensive review of the Toner-Tu theory).

In both cases, the lower critical dimension for flock-
ing is two. Later on, Vicsek et al. modified the model, and
observed the flocking transition in one dimension.12 In the
one-dimensional model, the particles do not have a constant
speed. That is, fluctuations and interactions affect both the
magnitude and the direction of the velocity.

Even though in the original work of Vicsek et al.,9 the
transition to flocking appeared to be second order (continu-
ous), Grégoire and Chaté showed that this result was a finite
size effect.13 In fact, they showed that, when larger systems
are considered, the transition to flocking becomes discontin-
uous. In contrast to early work on self-propelled particles,
Grégoire and Chaté claimed that the most general behavior
of active matter is a first order (discontinuous) transition to
flocking. Their claim was based on several generalizations of
the Vicsek model that include vectorial noise and the effect of
cohesion.

The findings of Grégoire and Chaté led to an interesting
debate. Vicsek’s group argued that the transition of the origi-
nal Vicsek et al. model (with scalar noise in position space,
leading to diffusion) is second order for low speed of the
active particles.14 Furthermore, they attributed the discontin-
uous nature of the transition for high speed to a numerical
artifact induced by an artificial interplay of a strong anisotropy
in the particle diffusion and the periodic boundary conditions.
While for low velocities, the self-organized state is character-
ized by small self-propelled clusters, for high velocities, it is
characterized by density waves. Boundary conditions quan-
tize the propagation direction of the density waves which, in
the opinion of Vicsek et al.,14 makes it impossible to deter-
mine the physical nature of the flocking transition for higher
velocities of the active particles. In addition, Aldana et al.15

pointed out that the nature of the transition depends crucially
on the way in which noise is introduced into the system.
To do this, Aldana et al. studied a set of networks that are
closely related to the problem of self-propelled particles. As
a counterargument, Chaté et al.16 claimed that the low speed
limit simply increases the system size at which the transition
exhibits the discontinuity. That is, they observed that the tran-
sition to flocking becomes first order even at low velocities
provided the system size is increased.

Most of the above-mentioned models for active matter
are based on hypothetical interactions that are chosen for the
sake of simplicity. This is the direction that we will also fol-
low in this work. It is worth mentioning, however, that there
are other simple active entities (ranging from bacteria to syn-
thetic active particles) which may exhibit more physically
motivated interactions. Along this line, for instance, there is
a great deal of work that shows that the flocking transition
can be observed in self-propelled rods that interact just due to
inelastic collisions.17–19

Even though Vicsek types of microscopic rules are sim-
ple for numerical simulations, it is quite difficult to obtain

conclusive analytic results from them. In one spatial dimen-
sion, Vicsek et al.12 proposed a hydrodynamic-like theory for
flocking. More recently, Solon and Tailleur proposed a new
kind of microscopic rule that leads to flocking in a model of
active spins.20 Instead of a constant speed, the particles in the
Solon-Tailleur model experience anisotropic diffusion, where
the direction of anisotropy is dictated by the spin modified
by the interaction with neighboring spins. Then, via a coarse-
graining procedure, they obtained a set of partial differential
equations that describe the system dynamics.

Here we propose a model for flocking based on a par-
ticular random walk paradigm, namely, a continuous-time
persistent random walk model. In its continuous version, it
is related to the telegrapher’s equation, and in its discrete
version, to Kac’s walk.21 A persistent random walker con-
sists of a particle with a constant speed, but with random
changes in its direction of motion (as in the usual model for
active particles). The properties of noninteracting persistent
random walkers and generalizations thereof have been widely
studied.22–24 In this article, we propose and analyze, both theo-
retically and numerically, a model for interactions which leads
to a flocking transition. For the sake of simplicity, we work
in one spatial dimension. In Sec. II, we briefly review the
continuous-time persistent random walk with no interactions.
In Sec. III, we present our new model and derive a set of non-
linear partial differential equations that describe the walk with
interactions. In Sec. IV, we implement a mean field approach
for the transition to flocking and we also show that there is
no spatial structuring of the flocking state via the classical
Turing-type of instability. In Sec. V, we carry out a detailed
numerical analysis of the model and construct the phase dia-
gram of flocking, showing that the formation of traveling
clusters is quite robust. In Sec. VI, we present an analytic esti-
mation of these traveling clusters, showing that the equations
derived in Sec. III are in good agreement with the numerical
observations. Finally, in Sec. VII, we summarize and present
concluding remarks.

II. BRIEF REVIEW OF PERSISTENT RANDOM WALK

In this section, we briefly introduce the persistent ran-
dom walk, with the main intention of establishing notation
and context for the next sections. The reader interested in this
vast topic may consult the extensive literature that has been
written about persistent random walks (see, for example, the
extensive bibliography in Ref. 24).21–24

As we mentioned in the Introduction, a persistent random
walker in one dimension moves at a constant speed, say V0,
but can randomly reverse the direction of its motion at a rate
λ. It is thus a spatially extended two-states system: the state of
the particle can be characterized by its position x, and its direc-
tion of motion, that is, direction + (moving to the right) and
direction − (moving to the left). Figure 1 shows the typical
trajectory of a persistent random walker in which the jumps in
the velocity between V0 and −V0 occur at random times that
are exponentially distributed. Between these velocity jumps
the motion of the walker is ballistic. More precisely, the times
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FIG. 1. Typical trajectory, x(t), of a persistent random walker with V0 = 1
and λ = 1.

between two consecutive jumps obey the waiting time distri-
bution w(t) = λe−λt. Hence the mean time between jumps is
τ = λ−1.

The process can be characterized by two distributions:
ρ+(x, t) and ρ−(x, t), where ρ±(x, t)dx is the probability of
finding the particle at a position within [x, x + dx] and in the
state + or − at time t. These distributions obey the equations

∂ρ+

∂t
= −V0

∂ρ+

∂x
− λ(ρ+ − ρ−), (1)

∂ρ−

∂t
= V0

∂ρ−

∂x
+ λ(ρ+ − ρ−). (2)

The total probability distribution ρ(x, t) for the particle posi-
tion x takes the form

ρ(x, t) = ρ+(x, t) + ρ−(x, t), (3)

while the flux is given by

J(x, t) = V0 [ρ+(x, t) − ρ−(x, t)] . (4)

Equations (1) and (2) can be rewritten in terms of ρ and J as

∂ρ

∂t
= −∂J

∂x
, (5)

∂J
∂t

= −V 2
0
∂ρ

∂x
− 2λJ . (6)

Equation (5) expresses the conservation of the probability,
while Eq. (6) describes the damping of the flux. If we con-
sider the particle to be confined in a box of size L (x ∈ [0, L]),
with periodic or null-flux boundary conditions, then the steady
state is

ρst = 1/L and Jst = 0, (7)

that is, a completely uniform distribution in the box, without
a preferential direction of motion.

From Eqs. (5) and (6), we can deduce that the probability
ρ(x, t) obeys the telegrapher’s equation

∂2ρ

∂t2
+ 2λ

∂ρ

∂t
− V 2

0
∂2ρ

∂x2
= 0, (8)

which is perhaps the most common way to describe a per-
sistent random walk. It is a damped wave equation with

dispersion relations [ρ ∼ exp(s(k)t + ikx)] of the form

s1(k) = −λ+
√
λ2 − (kV0)

2, (9)

s2(k) = −λ−
√
λ2 − (kV0)

2. (10)

Note that, for k = 0, we have s1(0) = 0, which is associated
with the conservation of probability, and s2(0) = −2λ, which
is associated with the damping of the initial flux. For small k
(small gradients),

s1(k) ≈ −Dk2,

where D = V 2
0 τ/2 and, as noted earlier, τ = λ−1 is the mean

time that a particle spends moving in the same direction.
It is interesting to note the similarity with the swimming
diffusivity, Dswim ∼ V 2

0 τ , obtained in the context of active
suspensions.25 Hence, the telegrapher’s Eq. (8) seems to be
a good candidate to emulate the properties of active particles
in one dimension. Here, the randomization is performed via
the jumps in the velocity at rate λ.

III. THE MODEL

A. Ensemble of N non-interacting active particles

We next focus on an ensemble of N non-interacting active
particles. At time t, there are N+(t) moving to the right
and N−(t) moving to the left. The total number of particles
is conserved, N+(t) + N−(t) = N . The state of a particle is
characterized by its position and its direction of motion, +
or −. Therefore, the microscopic state of the system can be
described by the set of coordinates

{
x+

1 (t), . . . , x+
N+(t)

}
,

{
x−

1 (t), . . . , x−
N−(t)

}
,

where x+
i (t) is the location of the ith particle at time t moving

right and x−
j (t) that of the jth particle moving left at time t.

The particles are confined in a one-dimensional box of length
L, x±

j (t) ∈ [0, L] ∀ t with j ∈ {1, . . . , N}, and with periodic
boundary conditions.

The macroscopic state of the system can be described by
the densities of particles in each state,

n+(x, t) =
N+(t)∑

j=1

δ
(

x − x+
j (t)

)
, (11)

n−(x, t) =
N−(t)∑

j=1

δ
(

x − x−
j (t)

)
. (12)

Alternatively, we can use the global density and the flux,

n(x, t) = n+(x, t) + n−(x, t), (13)

J (x, t) = V0 [n+(x, t) − n−(x, t)] . (14)

Note that defining the brackets ⟨· · ·⟩ as the ensemble average,

⟨n±(x, t)⟩ = Nρ±(x, t),
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we have

⟨n(x, t)⟩ = Nρ(x, t) and ⟨J (x, t)⟩ = NJ(x, t).

The steady state of a system of non-interacting particles is
therefore described by

⟨n±(x, t)⟩st = N
2L

, ⟨n(x, t)⟩st = N
L

and ⟨J (x, t)⟩st = 0,

(15)
that is, the global density and flux are N times the density and
flux for a single particle. As expected, an ensemble of non-
interacting particles does not exhibit any kind of collective
behavior. At the steady state, half of the particles move to the
right and the other half move to the left, without any flux.

B. Model for interaction

In order to observe the emergence of collective behavior,
we must allow the active particles to interact. Let us assume
that the particles recognize the densities of particles in each
of the two states of motion in a vicinity of range σ in each
direction, that is,

N±
σ (x, t) = 1

2σ

∫ x+σ

x−σ
n±(x′, t)dx′. (16)

Note that

N±
L/2(x, t) = N±(t)

L
. (17)

With an attractive interaction, the probability of a particle to
jump from one state of motion to the other will increase with
the number of particles that are in the second state. That is, if
we denote the rate at which the particle jumps from ± to ∓ as
λ{± → ∓}, then

λ {+ → −} = λ
(
aN−

σ (x, t)
)

, (18)

λ {− → +} = λ
(
aN+

σ (x, t)
)

, (19)

where λ(z) is a growing function of its argument z in order
to model an attractive interaction between the two states of
motion. The parameter a > 0 measures the strength of the
interaction.

In order to provide quantitative results, we need a spe-
cific model for the growing function λ(z). Many choices are
possible. One could be an exponential to emulate the con-
tact with a thermal bath, as in the Solon–Tailleur model.20 Of
course, there is no reason to assume that this growth will fol-
low a prescription from equilibrium statistical mechanics. For
numerical convenience, we have discarded the exponential
model. The simplest model for λ(z) is a linear dependence on
z. However, the linear model has already been studied in the
context of economics by Kirman26 with all-to-all interacting
agents. He has shown that there is a transition to ordering only
for finite numbers N of agents, that is, the ordering is lost in
the thermodynamics limit N → ∞. To avoid these patholog-
ical dynamical behaviors, we have chosen a nonlinear model
of the form

λ (z) = A + Bzβ , (20)

for which one of us has already shown that the transition to
ordering is preserved in the thermodynamic limit with all-to-
all interacting agents, the only exception being the linear case

β = 1.27 Moreover, rescaling the time and the strength of the
interaction a, we can always set A = 1 and B = 1. Here we
will restrict ourselves to the quadratic case β = 2, that is, our
working model for λ will be

λ (z) = 1 + z2. (21)

Note that some of us have already analyzed such polynomial
rates in the context of all-to-all interactions,28,29 and in a lat-
tice of motionless units.30 Here the consideration of active
units introduces new dynamical features.

IV. SPATIALLY EXTENDED MEAN FIELD THEORY FOR
FLOCKING DYNAMICS

In this section, we will derive a set of partial integro-
differential equations that describe the evolution of the macro-
scopic state of the system. To do this, we will use a mean
field strategy similar to the one we used in Ref. 31, where
we dealt with motionless three-state oscillators. Here, since
we are dealing with self-propelled units, an advection term
appears in the equations. The nonlinearity comes from the
interaction, which we refer to as the reaction term in analogy
with chemical kinetics.

Since we are not performing any coarse-graining, the
reaction term remains non-local in the macroscopic descrip-
tion. However, we are neglecting the fluctuations. Therefore,
the predictions that come from this non-local advection-
reaction system should be verified by direct numerical sim-
ulations of the microscopic rule that we introduced in Sec. III
(and that naturally include fluctuations). These comparisons
will be made in the following sections.

A. Continuous description via advection-reaction
equations

Note that,

〈
N±
σ (x, t)

〉
= N

2σ

∫ x+σ

x−σ
ρ±(x′, t)dx′.

We introduce the control parameter C and the interaction
ratio α,

C = aN
L

and α = 2σ
L

. (22)

The control parameter C may be interpreted as a measure of
the intensity of the interaction. We can increase C in two ways,
increasing the coupling strength a, or increasing the global
density N/L. We also define

νσ [ρ±(x, t)] =
∫ x+σ

x−σ
ρ±(x′, t)dx′. (23)

Then, an ensemble of interacting particles can be described by
the non-linear mean field equations

∂ρ+

∂t
= −V0

∂ρ+

∂x
− λ

(
C
α
νσ [ρ−]

)
ρ+ + λ

(
C
α
νσ [ρ+]

)
ρ−,

(24)

∂ρ−

∂t
= V0

∂ρ−

∂x
+ λ

(
C
α
νσ [ρ−]

)
ρ+ − λ

(
C
α
νσ [ρ+]

)
ρ−.

(25)
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For λ constant, Eqs. (24) and (25) are equivalent to Eqs. (1)
and (2), and predict the absence of collective motion. Note
that, independently of the functional form of λ, Eqs. (24) and
(25) always have the solution

ρ+ = ρ− = 1
2L

, (26)

which represents a completely uniform state in space and
time, without flux, that is, with no collective behaviors. In
fact, it coincides with the steady state of the non-interacting
system, e.g., Eq. (7) or (15). However, since the system (24)
and (25) is nonlinear, the solution (26) might destabilize, giv-
ing rise to new stable solutions, or may coexist with other
stable solutions. These other solutions may represent self-
organized states, for instance, a preferential flux (with both
directions equally preferred), or even more complex spa-
tiotemporal structuring. In Sec. IV B, we will explore these
possibilities.

B. Mean field analysis for the transition to flocking

1. All-to-all interaction σ = L/2

We start by analyzing the simplest case of all-to-all inter-
actions, that is, σ = L/2. Here the system can simply be
described by N+(t) and N−(t). Moreover, if we define the
probability that a given particle is in state ± at time t,

P±(t) =
∫ L

0
ρ±(x, t)dx, (27)

we have

⟨N±(t)⟩ = NP±(t),

νL/2 [ρ±(x, t)] = P±(t)

and the normalization condition

P+(t) + P−(t) = 1. (28)

Note that consistency between previous limits of integration
such as in Eq. (23) and those of Eq. (27) implies that x =
L/2. Since the integral is independent of x, the choice does
not matter.

Under these conditions, we can integrate Eq. (24) over
the box [0, L], and use Eq. (28), to obtain

dP+

dt
= λ (CP+) (1 − P+) − λ [C (1 − P+)] P+. (29)

Equation (29) has the fixed point P+ = 1/2, which represents
the homogeneous state (26). Self-organization may take place
via a destabilization of this solution. This can be studied by
the standard linear analysis, that is, with the perturbation

P+ = 1/2 + ε exp (st). (30)

Linearizing with respect to the small perturbation parameter
ε, we obtain

s = −2λ (C/2) + Cλ′ (C/2) , (31)

where the ′ denotes the derivative with respect to the argu-
ment. The symmetric solution P− = P+ = 1/2 destabilizes

FIG. 2. Order parameter + versus the control parameter C, for V0 = 1 and
σ = L/2. Dots are the results of a numerical simulation for N = 5000 with
the formula (37) and with ,t = 10−2, Ti = 2, and Tf = 20. The dashed line
corresponds to the mean field curve (36).

when s > 0. The critical point can be calculated specifying
the functional form of λ. For our working model (21),

Cc = 2, (32)

and the system undergoes a supercritical bifurcation (second
order transition). For C > Cc, P+ = 1/2 is unstable and two
new stable fixed points appear,

P± = 1/2 ±
√
C2 − C2

c

CcC
. (33)

The fixed points (33) represent emergence of flocking, that is,
the particles self-organize due to the interaction. In order to
choose a preferential direction in which the majority moves
together, we define the order parameters

ψ(t) =
∣∣∣∣

1
N

∫ L

0
J (x, t)dx

∣∣∣∣ =
∣∣∣∣
V0 (2N+(t) − N)

N

∣∣∣∣ , (34)

+ = lim
T→∞

1
T

∫ T

0
ψ(t)dt. (35)

With our mean field theory,

+MF =
{

V0
√
C2 − C2

c /C if C > Cc = 2
0 otherwise.

(36)

Figure 2 displays the numerical simulation of an ensemble of
N = 5000 particles, under the effect of global interactions. To
estimate the order parameter from the numerical simulations,
we have used the prescription

+NS = ,t
Tf − Ti

Tf /,t∑

j=Ti/,t

∣∣∣∣
V0 (2N+(j,t) − N)

N

∣∣∣∣ , (37)

where,t is the time step of the simulation, Ti is large enough
to avoid transient behaviors in the averaging, and Tf is large
enough to give a good estimation of the limit in Eq. (35). As
can be seen from Fig. 2, there is good agreement between Eqs.
(36) and (37), although near criticality fluctuations are larger,
as expected.

It is worth noting that for this fully connected system, the
problem can be solved exactly for finite N .27–29 For instance,
in Ref. 27, it has been shown that for the general expression
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(20), the critical point takes the form

Cc = 2

[
A

B
(
β − 1 + β(3 − β)N−1

)
]1/β

,

which coincides with expression (32) for A = B = 1, β = 2,
and N → ∞, as expected.

2. Absence of Turing-type instabilities in the case
σ < L/2

The branches in Eq. (36) are still valid for the case
σ < L/2. For C > Cc, they represent a uniform flux, without
any spatial structuring. However, in this case these branches
might destabilize due to a finite wavelength instability, which
leads to a spatial patterning of the flocking state. This is
the classical Turing instability, first proposed in the con-
text of reaction-diffusion systems.32 It is worth mentioning
that the Turing mechanism has been widely explored for
non-local interactions in many contexts such as population
dynamics,33–37 synchronization,31 and vegetation patterning
in arid zones,38,39 just to mention a few examples. Further-
more, finite wavelength instabilities have also been found
in the context of hydrodynamics-like coarse-grained descrip-
tions of active matter.40–42 For our working model, however,
we have not found any Turing-type instability of the uni-
form states. Below we briefly summarize our results for the
advection-reaction equations (24) and (25).

Let us consider a perturbation in Fourier space for the
disordered state (26), that is,

ρ± = 1
2L

+ ε± exp (st + ikx). (38)

Introducing Eq. (38) into Eqs. (24) and (25), and linearizing
with respect to ε±, we obtain an eigenvalue problem for s
which admits the two solutions

s1(k) = −.(k) +
√
.(k)2 − (kV0)

2, (39)

s2(k) = −.(k) −
√
.(k)2 − (kV0)

2, (40)

where

.(k) = λ (C/2) − C
2
λ′ (C/2)

{
sin kσ

kσ

}
. (41)

Note that, s1(0) = 0, which is associated with the conserva-
tion of probability. On the other hand, s2(0) = s, where s is
given by Eq. (31). Therefore, for k = 0, the system reproduces
the features of the globally coupled ensemble. For λ constant,
Eqs. (39) and (40) reduce to Eqs. (9) and (10). That is, without
interactions, Eqs. (39) and (40) correspond to the dispersion
relation of the telegrapher’s equation.

A Turing-type instability requires that the real part of one
of the eigenvalues in (39) and (40) become positive for a finite
wavelength (i.e., k ̸= 0). This occurs when .(k) becomes
negative. Since sin(kσ )/kσ has its maximum at k = 0, the
first mode to become unstable corresponds to k = 0, with the
critical point (32) for the interaction model (21). Therefore,
the instability of the disordered state for σ < L/2 has the
same features as for all-to-all interactions, σ = L/2. Hence,
no Turing mechanism spatial structuring is expected.

Furthermore, we can check the stability of the uni-
form flocking branches. That is, checking the stability under
perturbations of the form

ρ± = Q±

L
+ ε± exp (st + ikx), (42)

where

Q± = 1
2

±
√
C2 − C2

c

Cc C
corresponds to spatially uniform flocking, with a net move-
ment to the right (the analysis for flocking to the left is
completely equivalent). Note that we have explicitly used the
model (21) and restricted the analysis to C > Cc.

In this case, the eigenvalue problem gives us

s1(k) = −.̄(k) +
√
.̄(k)2 − (kV0)

2 + ikV0,(k), (43)

s2(k) = −.̄(k) −
√
.̄(k)2 − (kV0)

2 + ikV0,(k), (44)

where

.̄(k) = 1
2

[.+(k) +.−(k)] , (45)

,(k) = .+(k) −.−(k), (46)

with

.±(k) = λ (CQ∓) − CQ∓λ
′ (CQ±)

{
sin kσ

kσ

}
.

In this case, the spectra (43) and (44) again do not show
any positive values in its real parts. Therefore, the Turing
mechanism for spatial structuring is, again, absent in the spa-
tially uniform flocking states. However, spatial structuring
may appear due to other mechanisms which do not involve
a destabilization of the spatially uniform states. In fact, as we
will see below, clustering is very often encountered for low σ .

V. NUMERICAL OBSERVATIONS AND PHASE
DIAGRAMS FOR FLOCKING

We have performed numerical simulations of the stochas-
tic process defined by the rates Eqs. (18), (19), and (21) for
different values of the interaction distance σ .

A. All-to-all interactions

We first consider the case of all-to-all interactions where
the length L is irrelevant. Recall that in this case, the mean-
field prediction for the transition point is Cc = 2.

We have already shown in Fig. 2 that the order param-
eter + = ⟨ψ⟩ obtained from the numerical simulations and
the order parameter obtained from the analytic theory agree
quite well. Of course, small deviations from the theory are
to be expected as perfect agreement should only occur in
the thermodynamic limit N → ∞. We have found that the
data for different values of N can be accommodated in a
finite-size-scaling form +(C, N) = N−Af+(ϵNB), with ϵ =
C − Cc = C − 2 and f+(x) is the scaling function. Evidence
for this scaling behavior is shown in Fig. 3 using the Ising
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FIG. 3. Plot of N1/4+(C, N) versus (C − Cc)N1/2. The data collapse valid in
a large interval of the x-coordinate indicates the validity of the finite-size-
scaling law using the Ising universality-class critical exponents. The data
(from bottom to top at the right of the figure, the lines are a guide to the
eye) correspond to N = 500, 1000, 2000, 4000, 8000.

universality class critical exponents43 A = 1/4, B = 1/2. Fur-
ther evidence that this model in the all-to-all limit belongs
to the universality class of the Ising model is given by ana-
lyzing the critical behavior of the normalized fluctuations of
the order parameter (the “magnetic susceptibility” in the Ising
model language) χ = N[⟨ψ2⟩ − ⟨ψ⟩2]. In the thermodynamic
limit it diverges at the critical point as χ(C) ∼ |C − Cc|−γ ,
with a critical exponent γ = 1. Finite-size-scaling theory pre-
dicts that data for different system sizes should behave as
χ(C, N) = NCfχ (ϵNB), with ϵ = C − Cc = C − 2 and fχ (x) is
the scaling function. Evidence for this scaling behavior is
shown in Fig. 4 again using the Ising universality class critical
exponents C = 1/2, B = 1/2.

B. Finite-range interactions

We now consider the case of a finite range of interaction
σ . In the numerical simulations we have taken L = 1, a con-
stant number of particles N = 103 and varied σ in the interval
σ ∈ (0.05, 0.5) for different values of the coupling constant
C.45 The limiting case σ = 0.5 coincides with the all-to-all

FIG. 4. Plot of N−1/2χ(C, N) versus (C − Cc)N1/2. The data collapse valid in
a large interval of the x-coordinate indicates the validity of the finite-size-
scaling law using the Ising universality-class critical exponents. The data
correspond to N = 500, 1000, 2000, 4000, 8000.

FIG. 5. Plot of +(C, N) versus C for system size N = 1000, physi-
cal extension L = 1 and different values of the interaction length σ =
0.05, 0.10, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5 (from left to right in the figure). Note
that the data for σ = 0.3, 0.4, 0.5 collapse onto the same curve. The jumps
between the upper and lower branches at the small values of σ are an
indication of the first-order nature of the transition.

situation discussed in Sec. V A. It is remarkable that the order
parameter + and its normalized fluctuations χ are indepen-
dent of σ for all values σ ! 0.3. As σ decreases the order
parameter starts to depend on C and the transition becomes
discontinuous at a transition value C∗(σ ) < 2, as illustrated in
Fig. 5. The normalized fluctuations χ are displayed in Fig. 6.

Above the transition point C > C∗(σ ), the order parame-
ter + is different from zero, indicating an ordered (O) phase
in which a large fraction of particles move preferentially on
average in the same direction. For C < C∗(σ ), the system is
in the disordered (D) phase, where the different trajectories
are uncorrelated and, on average, half of the particles move
to the right and half to the left. It turns out that the ordered
phase can appear in two forms: a spatially homogeneous (OH)
phase (characterized again by a flat and time-independent
spatial pdf) and a clustered (OC) phase in which a macro-
scopic fraction of particles cluster in a particular location of
space that moves with global constant velocity. In the OC

FIG. 6. Plot of the normalized fluctuation χ(C, N) versus C for system size
N = 1000, physical extension L = 1 and (from left to right in the figure) the
same values of the interaction length σ used in Fig. 5. Note that the data for
σ = 0.3, 0.4, 0.5 collapse to the same curve, as detailed in the insert.
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FIG. 7. Lower set of curves: order parameter 2 as a function of the control
parameter C and (from left to right in the figure) the same values of the inter-
action length σ used in Fig. 5. The curves for σ = 0.3, 0.4, 0.5 overlap with
the line 2 = 1/

√
12 ≈ 0.2887, the root-mean-square of a uniform distribu-

tion in the [0, 1] interval. For comparison, we have also reproduced (vertically
shifted by an arbitrary amount) the different lines of Fig. 6 to show that the
transition from flocking to non-flocking in the location of the particles occurs
at the same value as the transition from order to disorder in the velocities.

phase, there is flocking as a large fraction of particles clus-
ter together in the same region of space and move with the
same velocity in the same direction. This traveling cluster
induces a moving density profile ρ(x, t) = ρ(x ± V0t). In the
non-clustering ordered scenario, the OH phase, the majority
of particles move in the same direction. To be able to distin-
guish between the two possible OC and OH ordered phases,
we introduce a second order parameter that originates from the
normalized root-mean-square 2 = σ [x]/L of the spatial pdf
ρ(x, t):

σ [x] =
√

x2 − x̄2, xn =
∫ L

0
dx xnρ(x, t). (47)

The order parameter is " = ⟨2⟩, where ⟨2⟩ denotes a time
average in the steady state. If the pattern is homogeneous,
the standard deviation is that of a flat distribution ρ(x, t) =
1
L

, x ∈ [0, L] or 2 = 1/
√

12 ≈ 0.289. For a single localized

pattern,44 2 scales as the width of the pattern divided by L. As
shown in Fig. 7 for sufficiently low σ " 0.3, the order param-
eter " signals a transition from a homogeneous to a clustered
phase at the same transition point C∗(σ ) as the order parame-
ter+ indicates the transition from disorder to order. For better
evidence, in this figure, we have plotted both order parameters
" and +.

The phase diagram in the (σ , C) space is schematized in
Fig. 8. D is the disordered phase where particles have ran-
domly distributed velocities and the density ρ is uniform. In
the OH (ordered homogeneous) phase, a majority of particles
synchronize their velocities but the density of particles is still
uniform. In the OC (ordered clustered) phase, particles cluster
around a point in space that moves with velocity +V0 or −V0.

FIG. 8. Schematic (not to scale) phase diagram in the (σ ,C) space of param-
eters showing the different phases present in the steady state of the dynamical
model discussed in the text. In the disordered (D) phase, particles move ran-
domly and independently of each other to the right or to the left. In the ordered
homogeneous (OH) phase, a large number of particles move synchronously
in a preferred direction but are uniformly distributed in space. In the ordered
clustered (OC) phase, particles, besides moving synchronously, stay close to
each other in the same region of space.

VI. QUASI-ANALYTIC ESTIMATION OF THE SHAPE OF
TRAVELING CLUSTERS

Let us consider a traveling solution of the advection-
reaction Eqs. (24) and (25). Without loss of generality, we will
consider probability profiles that move to the right,

ρ±(x, t) = ρ±(x − V0t). (48)

Then, Eqs. (24) and (25) take the form

−λ
(
C
α
νσ [ρ−]

)
ρ+ + λ

(
C
α
νσ [ρ+]

)
ρ− = 0, (49)

−λ
(
C
α
νσ [ρ−]

)
ρ+ + λ

(
C
α
νσ [ρ+]

)
ρ− = 2V0

∂ρ−

∂x
. (50)

Equations (49) and (50) imply

∂ρ−

∂x
= 0 ⇒ ρ− = p0,

where p0 is a constant.
Hence, using the model (21) for the function λ and after

some algebraic manipulations, Eq. (49) can be rewritten in the
form

Dρ+ = −∂U(ρ+)

∂ρ+
, (51)

where

U(ρ+) = − 2α
3C3

(3ρ+ − 1)3/2 + σρ2
+, (52)

with

3 = 1
p0

+
(

2Cσ
α

)2

p0 = 1
p0

+ (Na)2 p0,

while the linear operator D has the form

Dρ+ =
∫ x+σ

x−σ

[
ρ+(x′) − ρ+(x)

]
dx′.

Note that this operator can be expanded

D =
∞∑

j=1

2σ 2j+1

(2j + 1)!
∂2j

∂x2j
.

In order to give an analytic estimation for the density profile
of the cluster, let us just take the first order in the expansion
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of the operator D, that is,

D ≈ σ 3

3
∂2

∂x2
.

Then, Eq. (51) becomes a Newton-type equation, which can
be integrated,

∂ρ+

∂x
=

√
6[E − U(ρ+)]/σ 3,

where E is a conserved quantity, typically related to the energy
in a mechanical problem. Then,

√
6(x − V0t)
σ

=
∫ ρ+

ρ0

dρ√
[E − U(ρ)] /σ

, (53)

where ρ0 denotes some initial condition. Since, the system is
invariant under spatial translations and the solution is moving,
the election of ρ0 is not relevant.

The result of the integral in Eq. (53) is a long expression
which cannot be analytically inverted. Therefore, the last step
must be carried out numerically.

To perform our estimation of the shape of the cluster,
we look for the homoclinic orbits of the Newton-type sys-
tem. For a given value of the free parameter p0, this fixes the
value of the energy, say EH (p0) at the homoclinic orbit. This
energy is the same as the hyperbolic point that supports the
solitary wave, that is EH(p0) = Uh, where Uh is the potential-
like function Eq. (52) evaluated at the hyperbolic fixed point.
From the numerical simulations, it seems that almost all the
particles are absorbed by the traveling cluster. For small p0,
the hyperbolic point corresponds to ρ+ = ρ− = p0. We note
that the limit p0 = 0 is singular and does not admit a solitary
wave solution. However, for small p0, and after normalization,
we can obtain a good estimation of the cluster. In other words,
if ρ+ = 4(x − V0t, p0) corresponds to the homoclinic orbit of
the Newton-type system for a given value of p0, our analytic
estimation for the density profile of the cluster corresponds to

ρ+ = lim
p0→0

4(x − V0t, p0)∫ L
0 4(z, p0)dz

, (54)

ρ− = 0. (55)

Figure 9 displays our result of inverting Eq. (53), following
the protocol described above. To estimate the limit in Eq. (54),
we have taken a small p0 (p0 = 10−3 in Fig. 9), noting that
after normalization, the result does not seem to be very sen-
sitive to the value of p0. The dots in Fig. 9 come from direct
numerical simulation of the microscopic rule. As we see, the
agreement between our spatially extended mean field theory
and the direct numerical simulation of the microscopic rule is
satisfyingly good.

VII. SUMMARY AND FINAL REMARKS

We have presented a model for active matter, which is
based on interacting persistent random walkers in one dimen-
sion. The microscopic rule is time-continuous; therefore, any
values of the active particles’ speed have physical signifi-
cance. Following a similar strategy as that in Ref. 31, we
are able to write a set of advection-reaction equations that

FIG. 9. Continuous curve: Mean field density profile for the cluster, as the
result of inverting Eq. (53) for L = 1, σ = 0.05 and C = 1.7. Dots: Data from
direct numerical simulation of the microscopic rule, for the same parameters.

describe the spatiotemporal evolution of the densities of par-
ticles in each state of motion (moving right or moving left).
These equations correspond to a spatially extended mean-field
theory. Hence we are neglecting the inherent fluctuations of
the system. In order to check the prediction of this approx-
imation, we have performed direct numerical simulations of
the microscopic rule.

Our control parameter, Eq. (22), measures both the cou-
pling strength and the density of particles. Increasing the
control parameter, we have observed a transition to flocking.
The nature of this transition, however, strongly depends on
the range of interaction σ . For large σ , the system behaves
as predicted by the spaceless mean field theory. That is, for
σ ∗ < σ < L/2, the system behavior is well predicted by the
fully connected (or all-to-all interaction) case σ = L/2. More
precisely, in this region of large σ , the system exhibits a sec-
ond order transition to a flocking state, which is characterized
by a spatially uniform flux of particles. The critical value of
the control parameter, for which the system exhibits this tran-
sition to homogeneous flocking, seems to be the same as that
for the fully connected system, that is Eq. (32). In contrast, for
σ < σ ∗, the transition to flocking is characterized by the for-
mation of a cluster. The transition is first order and occurs for
lower values of the control parameter than the one predicted
by Eq. (32).

It is possible to conjecture that sufficiently increasing
the system size, we might end up in the short range interac-
tion regimen. Then, the transition to flocking should be first
order and characterized by cluster formation. Note that the
advection-reaction system gives a good approximation of the
density profile of the cluster. This noiseless nonlinear system
seems thus to be a good candidate for analytic investigation
of active matter. The model should of course be extended to
two and three dimensions. For the time being, we leave this
challenge to future work.
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