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Adrián Carro1,*, Raúl Toral1, and Maxi San Miguel1

1IFISC (CSIC-UIB), Instituto de Fı́sica Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes
Balears, E-07122, Palma de Mallorca, Spain
*adrian.carro@ifisc.uib-csic.es

Contents

1 Master equation 1

2 Equation for the time evolution of the first-order moments 〈si〉 2

3 Equation for the time evolution of the second-order cross-moments 〈sis j〉 4

4 Variance of n 5

5 Asymptotic approximations for the variance of n 8

6 Critical point approximation 10

7 Order parameter: the interface density ρ 10

8 Autocorrelation function of n 11

9 Suppementary Figure S1 13

References 13

1 Master equation
We derive here a general master equation for the N-node probability distribution P(s1, . . . ,sN), where the individual node
variables are binary and take the values si = {0,1}. Recalling that r+i is the rate at which node i changes its state from si = 0 to
si = 1 and r−i the rate at which it does so in the opposite direction, we can directly write differential equations for the probability
of node i to be in state si = 0 and for its probability to be in state si = 1, respectively,

dP(si = 0)
dt

=−r+i P(si = 0)+ r−i P(si = 1) ,

dP(si = 1)
dt

=−r−i P(si = 1)+ r+i P(si = 0) .

(S1)

Introducing here the individual-node step operators E+1
i and E−1

i , whose effect over an arbitrary function of the state of node i,
f (si), is defined as

E+1
i
[

f (si = 0)
]
= f (si = 1) ,

E+1
i
[

f (si = 1)
]
= 0 ,

E−1
i
[

f (si = 0)
]
= 0 ,

E−1
i
[

f (si = 1)
]
= f (si = 0) ,

(S2)

we can rewrite equations (S1) as

dP(si = 0)
dt

=−r+i P(si = 0)+ r−i E+1
i P(si = 0) ,

dP(si = 1)
dt

=−r−i P(si = 1)+ r+i E−1
i P(si = 1) .

(S3)



Multiplying these two equations, respectively, by (1− si) and si, we can gather them in a single differential equation,

dP(si)

dt
= (1− si)

[
−r+i P(si)+ r−i E+1

i P(si)
]
+ si

[
−r−i P(si)+ r+i E−1

i P(si)
]
, (S4)

and noticing that (1− si) = E+1
i [si] and si = E+1

i [(1− si)], we can rearrange terms as

dP(si)

dt
=
(
E+1

i −1
)[

sir−i P(si)
]
+
(
E−1

i −1
)[
(1− si)r+i P(si)

]
. (S5)

Finally, we find the master equation for the N-node probability distribution P(s1, . . . ,sN) by simply adding up the contribution
of every single node i ∈ [1,N],

dP(s1, . . . ,sN)

dt
=

N

∑
i=1

(
E+1

i −1
)[

sir−i P(s1, . . . ,sN)
]
+

N

∑
i=1

(
E−1

i −1
)[
(1− si)r+i P(s1, . . . ,sN)

]
. (S6)

2 Equation for the time evolution of the first-order moments 〈si〉
We show, in this section, how to obtain a general equation for the time evolution of the first-order moments 〈si〉 [equation (4)
in the main text]. Let us start by using the definition of the step operators in equation (S2) and the binary character of each
individual node state variable, si = {0,1}, to derive, for a given function of the state of node i, f (si), four relations which will
ease later calculations. While the function f might also depend on the other variables, f = f (s1, ...,si, ...,sN), we restrict our
attention, without loss of generality, to the case f (si). For the first two relations, we have that

∑
si

(
E+1

i −1
)
[si f (si)] = ∑

si

(
E+1

i [si f (si)]− si f (si)
)
= 1 · f (1)−0 · f (0)+0−1 · f (1) = 0 , (S7)

and

∑
si

(
E−1

i −1
)
[(1− si) f (si)] = ∑

si

(
E+1

i [(1− si) f (si)]− (1− si) f (si)
)
= 0−1 · f (0)+1 · f (0)−0 · f (1) = 0 , (S8)

where the sums are over the two possible values of si. Looking at the master equation (S6), one can understand that these two
relations translate the fact that any increase in the probability of a given node being in a given state must be accompanied by a
corresponding decrease in the probability of the complementary state. Regarding the other two relations, we can write

∑
si

si
(
E+1

i −1
)
[si f (si)] = ∑

si

si
(
E+1

i [si f (si)]− si f (si)
)

= 0 · (1 · f (1)−0 · f (0))+1 · (0−1 · f (1)) =−1 · f (1)

=−∑
si

si f (si) ,

(S9)

and

∑
si

si
(
E−1

i −1
)
[(1− si) f (si)] = ∑

si

si
(
E+1

i [(1− si) f (si)]− (1− si) f (si)
)

= 0 · (0−1 · f (0))+1 · (1 · f (0)−0 · f (1)) = 1 · f (0)

= ∑
si

(1− si) f (si) .

(S10)

Let us also introduce, for clarity, the notation ∑{s} to refer to the sum over all the possible combinations of states of all the
individual nodes’ variables,

∑
{s}
≡∑

s1
∑
s2

· · ·∑
sN

, (S11)

and ∑{s} j to indicate the sum over all the possible combinations of states of all the variables except s j,

∑
{s} j

≡∑
s1

· · ·∑
s j−1

∑
s j+1

· · ·∑
sN

. (S12)
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Note that these two definitions are related by

∑
{s}

= ∑
{s} j

∑
s j

, (S13)

which allows us to split the sum over all possible configurations of the system into a sum over the values of one of the variables
and a sum over the configurations of the rest of the system. By using the notation in (S11), the average of a given function of
the states of the nodes, f (s1, . . . ,sN), can be written as〈

f (s1, . . . ,sN)
〉
= ∑
{s}

f (s1, . . . ,sN)P(s1, . . . ,sN) . (S14)

Using this expression and the master equation in (S6) we derive an equation for the time evolution of the average value of
the state of node i,

d〈si〉
dt

= ∑
{s}

si
dP(s1, . . . ,sN)

dt

= ∑
{s}

N

∑
j=1

si

(
E+1

j −1
)[

s jr−j P(s1, . . . ,sN)
]
+∑
{s}

N

∑
j=1

si

(
E−1

j −1
)[

(1− s j)r+j P(s1, . . . ,sN)
]
.

(S15)

Separating the terms with j = i and those with j 6= i, we find

d〈si〉
dt

= ∑
{s}

si
(
E+1

i −1
)[

sir−i P(s1, . . . ,sN)
]
+∑
{s}

si
(
E−1

i −1
)[
(1− si)r+i P(s1, . . . ,sN)

]

+∑
{s}

N

∑
j 6=i

si

(
E+1

j −1
)[

s jr−j P(s1, . . . ,sN)
]
+∑
{s}

N

∑
j 6=i

si

(
E−1

j −1
)[

(1− s j)r+j P(s1, . . . ,sN)
]
.

(S16)

If we now use the relation (S13) to extract, from the general sum over {s}, the sum over the values of si for the terms with
j = i, while we extract the sum over the values of s j for the terms with j 6= i, we obtain

d〈si〉
dt

= ∑
{s}i

[(
∑
si

si
(
E+1

i −1
)[

sir−i P(s1, . . . ,sN)
])

+

(
∑
si

si
(
E−1

i −1
)[
(1− si)r+i P(s1, . . . ,sN)

])]

+
N

∑
j 6=i

∑
{s} j

si

[(
∑
s j

(
E+1

j −1
)[

s jr−j P(s1, . . . ,sN)
])

+

(
∑
s j

(
E−1

j −1
)[

(1− s j)r+j P(s1, . . . ,sN)
])]

,

(S17)

where we can easily identify relations (S7) and (S8) for the terms with j 6= i, and relations (S9) and (S10) for the terms with
j = i. In this way, we can write

d〈si〉
dt

= ∑
{s}i

(
−∑

si

sir−i P(s1, . . . ,sN)

)
+ ∑
{s}i

(
∑
si

(1− si)r+i P(s1, . . . ,sN)

)
, (S18)

which, after combining the sums together again, becomes

d〈si〉
dt

= ∑
{s}

[
r+i − (r+i + r−i )si

]
P(s1, . . . ,sN) , (S19)

and we finally find the equation for the time evolution of the first-order moments presented in the main text,

d〈si〉
dt

= 〈r+i 〉−〈(r+i + r−i )si〉. (S20)
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3 Equation for the time evolution of the second-order cross-moments 〈sis j〉
In order to find a general equation for the time evolution of the second-order cross-moments 〈sis j〉 [equation (5) in the main
text] we proceed in a similar way as we did in the previous section for the first-order moments. Taking into account the master
equation (S6) and using the definition of the average value in (S14), we can write for the second-order cross-moments,

d〈sis j〉
dt

= ∑
{s}

sis j
dP(s1, . . . ,sN)

dt

= ∑
{s}

N

∑
k=1

sis j
(
E+1

k −1
)[

skr−k P(s1, . . . ,sN)
]
+∑
{s}

N

∑
k=1

sis j
(
E−1

k −1
)[
(1− sk)r+k P(s1, . . . ,sN)

]
.

(S21)

For the terms of the sum with k 6= i, j, we can use relation (S13) to write

N

∑
k 6=i, j

∑
{s}k

sis j

[(
∑
sk

(
E+1

k −1
)[

skr−k P(s1, . . . ,sN)
])

+

(
∑
sk

(
E−1

k −1
)[
(1− sk)r+k P(s1, . . . ,sN)

])]
= 0 , (S22)

where the equality follows from an application of relations (S7) and (S8). Similarly, we can use relations (S9) and (S10) to
transform, in equation (S21), the terms with k = i 6= j as

∑
{s}i

s j

[(
∑
si

si
(
E+1

i −1
)[

sir−i P(s1, . . . ,sN)
])

+

(
∑
si

si
(
E−1

i −1
)[
(1− si)r+i P(s1, . . . ,sN)

])]

= ∑
{s}i

s j

[
−∑

si

sir−i P(s1, . . . ,sN)+∑
si

(1− si)r+i P(s1, . . . ,sN)

]

=−∑
{s}

sis jr−i P(s1, . . . ,sN)+∑
{s}

(1− si)s jr+i P(s1, . . . ,sN)

= 〈r+i s j〉−〈(r+i + r−i )sis j〉 ,

(S23)

and, equivalently, the terms with k = j 6= i as

∑
{s} j

si

[(
∑
s j

s j

(
E+1

j −1
)[

s jr−j P(s1, . . . ,sN)
])

+

(
∑
s j

s j

(
E−1

j −1
)[

(1− s j)r+j P(s1, . . . ,sN)
])]

= 〈r+j si〉−〈(r+j + r−j )sis j〉 .

(S24)

Note that, for both expressions (S23) and (S24), we have assumed that i 6= j. In order to study the other case, when i = j,
we simply need to notice that, being the possible values of the variables si = {0,1}, then s2

i = si, and therefore

d〈sisi〉
dt

=
d〈si〉

dt
= 〈r+i 〉−〈(r+i + r−i )si〉 , (S25)

where we have used the result (S20) for the first-order moments derived in the previous section.
Thus, we can write an equation for the second-order cross-moments as

d〈sis j〉
dt

=

〈r
+
i s j〉+ 〈r+j si〉−〈qi jsis j〉 if i 6= j

〈r+i 〉−〈(r+i + r−i )si〉 if i = j
, (S26)

where qi j = r+i + r−i + r+j + r−j . Finally, using the Kronecker delta, we obtain the expression presented in the main text,

d〈sis j〉
dt

= 〈r+i s j〉+ 〈r+j si〉−〈qi jsis j〉+δi j
[
〈sir−i 〉+ 〈(1− si)r+i 〉

]
. (S27)
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4 Variance of n

We derive here an analytical expression for the steady state variance of n [equation (14) in the main text]. Let us start by
introducing the transition rates of the noisy voter model [equation (1) in the main text] into the equation for the time evolution
of the second-order cross-moments obtained in the previous section, equation (S27),

d〈sis j〉
dt

=a(〈si〉+ 〈s j〉)+
h
ki

∑
m∈nn(i)

〈sms j〉+
h
k j

∑
m∈nn( j)

〈smsi〉−2(2a+h)
〈
sis j
〉

+δi j

[
a+h〈si〉+

h
ki

∑
m∈nn(i)

〈sm〉−
2h
ki

∑
m∈nn(i)

〈smsi〉
]
.

(S28)

Applying now the annealed approximation for uncorrelated networks described in the main text [see equation (10)], we can
replace the sums over sets of neighbors by sums over the whole system, finding

d〈sis j〉
dt

=a(〈si〉+ 〈s j〉)+
h

Nk ∑
m

km (〈smsi〉+ 〈sms j〉)−2(2a+h)〈sis j〉

+δi j

[
a+h〈si〉+

h
Nk ∑

m
km〈sm〉−

2h
Nk ∑

m
km〈smsi〉

]
.

(S29)

Bearing in mind the definition of the covariance matrix, σi j = 〈sis j〉−〈si〉〈s j〉, we can find an equation for its time evolution
from equation (6) in the main text and equation (S29),

dσi j

dt
=

d〈sis j〉
dt

− d〈si〉
dt
〈s j〉−〈si〉

d〈s j〉
dt

=−2(2a+h)(〈sis j〉−〈si〉〈s j〉)+
h

Nk ∑
m

km

[
(〈smsi〉−〈sm〉〈si〉)+(〈sms j〉−〈sm〉〈s j〉)

]
+δi j

[
a+h〈si〉+

h
Nk ∑

m
km〈sm〉−

2h
Nk ∑

m
km〈smsi〉

]
,

(S30)

which can be written in terms of only the covariance matrix and the first moments,

dσi j

dt
=−2(2a+h)σi j +

h
Nk ∑

m
km (σmi +σm j)

+δi j

[
a+

h
Nk ∑

m
km〈sm〉+

(
h− 2h

Nk ∑
m

km〈sm〉
)
〈si〉−

2h
Nk ∑

m
kmσmi

]
.

(S31)

In the steady state, and using also the steady state solution of the first order moments 〈si〉st = 1/2 [equation (7) in the main
text], we find

σi j =

h
Nk ∑

m
km (σmi +σm j)+δi j

[
a+

h
2
− 2h

Nk ∑
m

kmσmi

]
2(2a+h)

. (S32)

Note that, for the sake of notational simplicity, we have dropped the subindex st for the steady state solution of the covariance
matrix. Recalling now the relation between the variance of n and the covariance matrix [equation (13) in the main text], we can
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find an equation for the steady state variance of n by simply summing equation (S32) over i and j,

σ
2
st [n] = ∑

i j
σi j =

h
Nk ∑

i jm
km (σmi +σm j)+∑

i

[
a+

h
2
− 2h

Nk ∑
m

kmσmi

]
2(2a+h)

=

h
k

(
∑
im

kmσmi +∑
jm

kmσm j

)
+N

(
a+

h
2

)
− 2h

Nk ∑
im

kmσmi

2(2a+h)

=

N
(

a+
h
2

)
+

2h
k

(
1− 1

N

)
∑
im

kmσmi

2(2a+h)
.

(S33)

Let us introduce now the set of variables Sx, with x ∈ {0,1,2, . . .}, and defined as

Sx = ∑
im

kx
i kmσmi . (S34)

In this way, we can rewrite the steady state variance of n in terms of one of these new variables, S0,

σ
2
st [n] =

N
(

a+
h
2

)
+

2h
k

(
1− 1

N

)
S0

2(2a+h)
. (S35)

In order to find an equation for this new variable S0, we could use again the equation for the covariance matrix in (S32),
multiplying it by k j and summing over i and j, obtaining a solution in terms of the variable S1. We could then proceed similarly
and find an equation for S1 as a function of S2, for S3 as a function of S4, and so forth. In general, for any x, we have

Sx = ∑
i j

kx
i k jσi j =

h
Nk ∑

i jm
kx

i k jkm (σmi +σm j)+∑
i

kx+1
i

[
a+

h
2
− 2h

Nk ∑
m

kmσmi

]
2(2a+h)

=

h
Nk ∑

j
k j ∑

im
kx

i kmσmi +
h

Nk ∑
i

kx
i ∑

jm
k jkmσm j +∑

i
kx+1

i

(
a+

h
2

)
− 2h

Nk ∑
im

kx+1
i kmσmi

2(2a+h)

=

hSx +
h
k

kxS1 +Nkx+1

(
a+

h
2

)
− 2h

Nk
Sx+1

2(2a+h)
,

(S36)

where the overbar notation is used for averages over the degree distribution [see equation (3) in the main text]. From
equation (S36) we can obtain an expression for the variable Sx in terms of only S1 and Sx+1,

Sx =

h
k

kxS1 +Nkx+1

(
a+

h
2

)
− 2h

Nk
Sx+1

4a+h
. (S37)

By inverting equation (S37), we can write all variables Sx+1 in terms of the preceding ones,

Sx+1 =

[
− (4a+h)Nk

2h

]
Sx +

N
2

[
kxS1 +

Nk
h

(
a+

h
2

)
kx+1

]
, (S38)

which has the general form

Sx+1 = ASx +Bx . (S39)
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It is easy to see that this recurrence relation has the solution

Sx+1 = AxS1 +
x

∑
m=1

Ax−mBx , (S40)

where the choice of S1 instead of S0 in the first term allows us to write all the variables Sx+1 in terms of only one of them, S1.
Note that this choice is required by the presence of a term with S1 inside Bx. Thus, we can write the solution for our original
recurrence relation in (S38) as

Sx+1 =

[
− (4a+h)Nk

2h

]x

S1 +
x

∑
m=1

[
− (4a+h)Nk

2h

]x−m
N
2

[
kmS1 +

Nk
h

(
a+

h
2

)
km+1

]
. (S41)

If we now rewrite equation (S41) as

Sx+1[
− (4a+h)Nk

2h

]x = S1 +
x

∑
m=1

[
− (4a+h)Nk

2h

]−m
N
2

[
kmS1 +

Nk
h

(
a+

h
2

)
km+1

]
, (S42)

we find that the left hand side of this equation vanishes in the limit of x→ ∞,

lim
x→∞

Sx+1[
− (4a+h)Nk

2h

]x = lim
x→∞

∑
i j

kx+1
i k jσi j[

− (4a+h)Nk
2h

]x =

[
− (4a+h)Nk

2h

]
lim
x→∞

∑
i j

[
− 2hki

(4a+h)Nk

]x+1

k jσi j = 0 , (S43)

where we have used the definition of the variables Sx given in equation (S34). A necessary and sufficient condition for the last
equality in equation (S43) to hold is that

∀i :
∣∣∣∣− 2hki

(4a+h)Nk

∣∣∣∣< 1 =⇒ ∀i : ki <
(4a+h)Nk

2h
, (S44)

which is generally true and always true for h > 0 and k ≥ 2. Thus, in the x→ ∞ limit, we can equate the right hand side of
equation (S42) to zero,

S1 +

(
∞

∑
m=1

[
− (4a+h)Nk

2h

]−m
N
2

km

)
S1 +

(
∞

∑
m=1

[
− (4a+h)Nk

2h

]−m
N2k
2h

(
a+

h
2

)
km+1

)
= 0 , (S45)

and find, in this way, a solution for S1,

S1 =

−N2k
2h

(
a+

h
2

)
∞

∑
m=1

[ −2h
(4a+h)Nk

]m

km+1

1+
N
2

∞

∑
m=1

[ −2h
(4a+h)Nk

]m

km
. (S46)

Regarding the sums in equation (S46), we can use the sum of the geometric series

∞

∑
m=1

Amkm+z = kz
∞

∑
m=1

Amkm =
Akz+1

1−Ak
, if |Ak|< 1 , (S47)

where the condition of convergence is exactly the same as presented before in equation (S44), and thus generally true and
always true for h > 0 and k ≥ 2. In this way, applying the result (S47) to equation (S46) we have

S1 =

N2k
(

a+
h
2

) k2

1+ 2hk
(4a+h)Nk


(4a+h)Nk−hN

 k
1+ 2hk

(4a+h)Nk


=

N2k
(

a+
h
2

)
(4a+h)

(
k2

(4a+h)Nk+2hk

)
4a+h− h

k

(
(4a+h)Nkk

(4a+h)Nk+2hk

) , (S48)
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where the denominator can be rewritten as

4a+h− h
k

(
(4a+h)Nkk

(4a+h)Nk+2hk

)
= 4a+

h
k
[(4a+h)Nk+2hk]k− (4a+h)Nkk

(4a+h)Nk+2hk

= 4a+
h
k
[(4a+h)Nk+2hk](k− k)+2hk2

(4a+h)Nk+2hk

= 4a+
h
k
(k− k)+

2h2

k

(
k2

(4a+h)Nk+2hk

)

= 4a+
2h2

k

(
k2

(4a+h)Nk+2hk

)
,

(S49)

thereby finding a final expression for S1,

S1 =

N2k
(

a+
h
2

)
(4a+h)

(
k2

(4a+h)Nk+2hk

)
4a+

2h2

k

(
k2

(4a+h)Nk+2hk

) . (S50)

If we now go back to the equation for the steady state variance σ2
st [n] as a function of S0, equation (S35), and we use

equation (S37) to find an expression for S0 as a function of S1,

S0 =

Nk
(

a+
h
2

)
+

h
k

(
1− 2

N

)
S1

4a+h
, (S51)

then we can write an equation for the steady state variance as a function of S1,

σ
2
st [n] =

N
4

[
1+

2h
(
1− 1

N

)
4a+h

+

(
N−3+

2
N

)(
h
k

)2 2S1

N2
(
a+ h

2

)
(4a+h)

]
. (S52)

Finally, introducing here what we found for S1 in equation (S50), we arrive to the final expression for the steady state variance
of the global variable n as presented in the main text,

σ
2
st [n] =

N
4

1+
2h
(
1− 1

N

)
4a+h

+

(
N−3+

2
N

) (
h2

k

)(
k2

(4a+h)Nk+2hk

)
2a+

(
h2

k

)(
k2

(4a+h)Nk+2hk

)
 . (S53)

5 Asymptotic approximations for the variance of n
We develop here a first-order approximation for the steady state variance of n with respect to the system size N. Given the
dependence of the result of this approximation on the relationship between the system size N and the noise parameter a, we are
forced to consider two different asymptotic approximation regimes: one for small a [corresponding to equation (16) in the main
text] and the other for large a [corresponding to equation (17) in the main text].

Let us start by noticing that the structural constraint imposed by the annealed approximation for uncorrelated networks on
the degrees of the network, ki <

√
Nk, allows us to write equation (S53) as

σ
2
st [n] =

N
4

1+
2h
(
1− 1

N

)
4a+h

+

(
N−3+

2
N

) (
h2

k

)(
k2

(4a+h)Nk
(
1+O

(
N−1/2

)))

2a+
(

h2

k

)(
k2

(4a+h)Nk
(
1+O

(
N−1/2

)))
 . (S54)
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In this way, we notice that, depending on the order of the product aN, the approximation of the third term in equation (S54)
will lead to different results. In particular, when the noise parameter a is of order O(N−1) or smaller, then the product aN is, at
most, of order O(N0), and we can continue with the approximation as

σ
2
st [n] =

N
4

1+
2h
(
1− 1

N

)
4a+h

+

(
N−3+

2
N

)
(

h2

k

)(
k2

(4a+h)Nk

)

2a+
(

h2

k

)(
k2

(4a+h)Nk

) +O(N−1/2)




=
N
4

1+2
(

1− 1
N

)
+

(
N−3+

2
N

)
h

(
k2

k
2

)

2aN +h

(
k2

k
2

) +O(N−1/2)


 ,

(S55)

which, to the first order in N, becomes

σ
2
st [n] =

N
4

N


h

(
k2

k
2

)

2aN +h

(
k2

k
2

) +O(N−1/2)


 . (S56)

Using now the definition of the variance of the degree distribution, σ2
k = k2− k

2
, we find the approximation presented in the

main text for the steady state variance of n for small a and to the first order in N,

σ
2
st [n] =

N2

4


h
(

σ2
k

k
2 +1

)
2aN +h

(
σ2

k

k
2 +1

)
+O(N3/2) . (S57)

Note that the remaining terms are at most of order O(N3/2).
On the contrary, when a is of order O(N0) or larger, then the product aN is, at least, of order O(N), and we can approximate

equation (S54) as

σ
2
st [n] =

N
4

1+
2h
(
1− 1

N

)
4a+h

+

(
N−3+

2
N

)
(

h2

k

)(
k2

(4a+h)Nk

)

2a+
(

h2

k

)(
k2

(4a+h)Nk

) +O(N−3/2)




=
N
4

1+
2h
(
1− 1

N

)
4a+h

+

(
N−3+

2
N

)
h2

(
k2

k
2

)

2a(4a+h)N +h2

(
k2

k
2

) +O(N−3/2)




=
N
4

1+
2h
(
1− 1

N

)
4a+h

+

(
N−3+

2
N

)
h2

(
k2

k
2

)
2a(4a+h)N

+O(N−3/2)


 .

(S58)

Note that the remaining terms are now one order of N smaller than in the previous approximation [equation (S55)]. To the first
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order in N we have

σ
2
st [n] =

N
4

1+
2h

4a+h
+

h2

(
k2

k
2

)
2a(4a+h)

+O(N−1/2)

=
N
4

1+

4ah+h2

(
k2− k

2
+ k

2

k
2

)
2a(4a+h)

+O(N−1/2)

 , (S59)

and, finally, we find the approximation presented in the main text for the steady state variance of n for large a and to the first
order in N,

σ
2
st [n] =

N
4

1+
h

2a
+

h2 σ2
k

k
2

2a(4a+h)

+O(N1/2) , (S60)

where the remaining terms are at most of order O(N1/2).

6 Critical point approximation
In this section, we derive an analytical approximation for the critical point of the bimodal-unimodal transition [equation (18) in
the main text], which can be defined as the relationship between the model parameters a and h leading the steady state variance
of n to take the value σ2

st [n] = N(N +2)/12, corresponding to a uniform distribution between 0 and N. In particular, bearing in
mind that the critical value ac of a fully-connected system is of order O(N−1) and that the change due to the network structure
appears to be of order O(N0) (see Fig. 2 in the main text), then we can expect the value of the critical point to be still of order
O(N−1), and we can therefore use the small a asymptotic approximation in equation (S57),

σ
2
st [n] =

N2

4


h
(

σ2
k

k
2 +1

)
2acN +h

(
σ2

k

k
2 +1

)
+O(N3/2) =

N(N +2)
12

. (S61)

The solution of this equation leads to the, for large N, leads to the value of the critical point discussed in the main text,

ac =
h
N

(
σ2

k

k
2 +1

)
+O(N−3/2) , (S62)

consistent with the assumption of a critical value of order O(N−1). Note that assuming, instead, the critical value to be of order
O(N0), and using therefore the large a asymptotic approximation in equation (S60), leads again to an ac of order O(N−1),
inconsistent with the initial assumption.

7 Order parameter: the interface density ρ

We obtain, this section, an analytical expression for the order parameter ρ [equation (21) in the main text]. ρ is defined as the
interface density or density of active links, that is, the fraction of links connecting nodes in different states. In terms of the
connectivity matrix Ai j,

ρ =

1
2 ∑

i j
Ai j[si(1− s j)+(1− si)s j]

1
2 ∑

i j
Ai j

=

∑
i j

Ai j(si + s j− sis j)

∑
i j

Ai j
, (S63)

and introducing the annealed approximation for uncorrelated networks described in the main text [see equation (10) in the main
text], we find

ρ =

∑
i j

kik j

Nk
(si + s j− sis j)

∑
i j

kik j

Nk

= ∑
i j

kik j(
Nk
)2 (si + s j− sis j) . (S64)
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Restricting our attention to the steady state average value of equation (S64),

〈ρ〉st = ∑
i j

kik j(
Nk
)2

(
〈si〉st + 〈s j〉st −〈sis j〉st

)
, (S65)

we can use the steady state mean solution found before for the individual node variables si, 〈si〉st = 1/2, and the definition of
the covariance matrix in the steady state, σi j = 〈sis j〉st −1/4, in order to write

〈ρ〉st =
1
2
− 2(

Nk
)2 ∑

i j
kik jσi j , (S66)

where we can identify the variable S1 [see equation (S34)],

〈ρ〉st =
1
2
− 2S1(

Nk
)2 . (S67)

Finally, reversing the relation (S52) between the variance of n and the variable S1, we can write the steady state average
interface density ρ in terms of the variance of n,

〈ρ〉st =
1
2
− 2

(hN)2

[
(4a+h)(2a+h)(
1− 1

N

)(
1− 2

N

) (σ
2[n]− N

4

)
−
(
a+ h

2

)(
1− 2

N

)hN

]
, (S68)

as it appears in the main text.

8 Autocorrelation function of n
We derive here an analytical expression for the steady state autocorrelation function of n [equations (23) and (24) in the main
text], defined as

Kst [n](τ) = 〈n(t + τ)n(t)〉st −〈n〉2st , (S69)

where τ plays the role of a time-lag. As far as the second point in time, t + τ , is concerned, we assume that the system was at
n(t) at time t, and hence we can treat n(t) as an initial condition,

Kst [n](τ) = 〈〈n(t + τ)|n(t)〉n(t)〉st −〈n〉2st , (S70)

which, in terms of the individual variables {si} and taking into account that 〈n〉st = N/2, can be written as

Kst [n](τ) = ∑
i j
〈〈si(t + τ)|{sl(t)}〉s j(t)〉st −

N2

4
. (S71)

We need, therefore, an expression for 〈si(t + τ)|{sl(t)}〉, which we find by integration of the equation for the temporal evolution
of the first-order moments 〈si〉—obtained by introducing the transition rates of the noisy voter model into equation (S20)—,

d〈si(t + τ)|{sl(t)}〉
dτ

= a− (2a+h)〈si(t + τ)|{sl(t)}〉+
h

Nk ∑
m

km〈sm(t + τ)|{sl(t)}〉 . (S72)

In order to integrate equation (S72), we must first obtain an expression for

b(t + τ)≡ h
Nk ∑

m
km〈sm(t + τ)|{sl(t)}〉 , (S73)

which we can find by multiplying equation (S72) by hki/Nk and summing over i,

d
dτ

(
h

Nk ∑
i

ki〈si(t + τ)|{sl(t)}〉
)

=
ah
Nk ∑

i
ki−

(2a+h)h
Nk ∑

i
ki〈si(t + τ)|{sl(t)}〉

+

(
h

Nk

)2

∑
i

ki ∑
m

km〈sm(t + τ)|{sl(t)}〉 .

(S74)
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In this way, we arrive to the differential equation

db(t + τ)

dτ
= ah− (2a+h)b(t + τ)+hb(t + τ) = ah−2ab(t + τ) , (S75)

which has the solution

b(t + τ) =
h
2
(
1− e−2aτ

)
+b(t)e−2aτ , (S76)

depending on the initial condition b(t). Using this expression, we can now integrate equation (S72) for the first-order moments,

d〈si(t + τ)|{sl(t)}〉
dτ

= a− (2a+h)〈si(t + τ)|{sl(t)}〉+b(t + τ) , (S77)

which has the general solution

〈si(t + τ)|{sl(t)}〉=

∫
τ

0
e(2a+h)τ ′ [a+b(t + τ

′)
]

dτ
′+ c1

e(2a+h)τ

=

∫
τ

0
e(2a+h)τ ′

[
a+

h
2

(
1− e−2aτ ′

)
+b(t)e−2aτ ′

]
dτ
′+ c1

e(2a+h)τ

=

(
a+

h
2

)∫
τ

0
e(2a+h)τ ′dτ

′+
(

b(t)− h
2

)∫
τ

0
ehτ ′dτ

′+ c1

e(2a+h)τ

=
1
2

(
1− e−(2a+h)τ

)
+

b(t)− h
2

h

(
e−2aτ − e−(2a+h)τ

)
+ c1e−(2a+h)τ .

(S78)

Applying now the initial condition 〈si(t)|{sl(t)}〉= si(t), we find

〈si(t + τ)|{sl(t)}〉=
1
2

(
1− e−(2a+h)τ

)
+

b(t)− h
2

h

(
e−2aτ − e−(2a+h)τ

)
+ si(t)e−(2a+h)τ . (S79)

We are now ready to go back to the autocorrelation function (S71) and write, in the steady state,

Kst [n](τ) =∑
i j

〈
1
2

(
1− e−(2a+h)τ

)
s j(t)

〉
st
+∑

i j

〈
b(t)− h

2
h

(
e−2aτ − e−(2a+h)τ

)
s j(t)

〉
st

+∑
i j

〈
si(t)s j(t)e−(2a+h)τ

〉
st
− N2

4
.

(S80)

Given that we assume the state of the system at t to be our initial condition, b(t) can be written as

b(t) =
h

Nk ∑
i

ki〈si(t)|{sl(t)}〉=
h

Nk ∑
i

kisi(t) , (S81)

and thus we have, for the autocorrelation function,

Kst [n](τ) =
1
2

(
1− e−(2a+h)τ

)
∑
i j
〈s j(t)〉st +

1
Nk

(
e−2aτ − e−(2a+h)τ

)
∑
i jm

km〈sm(t)s j(t)〉st

− 1
2

(
e−2aτ − e−(2a+h)τ

)
∑
i j
〈s j(t)〉st + e−(2a+h)τ

∑
i j
〈si(t)s j(t)〉st −

N2

4
.

(S82)

Using now the value found before for the steady state solution of the first-order moments, 〈si〉st = 1/2, and the definition of the
covariance matrix in the steady state, σi j = 〈sis j〉st −〈si〉2st = 〈sis j〉st −1/4, we find

Kst [n](τ) =−e−2aτ N2

4
+

1
k

(
e−2aτ − e−(2a+h)τ

)
∑
jm

km

(
σm j +

1
4

)
+ e−(2a+h)τ

∑
i j

(
σi j +

1
4

)
. (S83)
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Finally, identifying in the previous equation the variance of n and the variable S1 [see equation (S34)], and reordering terms
according to their exponential decay, we find the expression for the autocorrelation function of n discussed in the main text,

Kst [n](τ) =
(

σ
2[n]− S1

k

)
e−(2a+h)τ +

S1

k
e−2aτ . (S84)

The definition of the variable S1 given in the main text, as a function of the variance of n, can be directly obtained by reversing
equation (S52).

9 Suppementary Figure S1
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〈ρ〉st

Erdös-Rényi analytical
Erdös-Rényi numerical
Barabási-Albert analytical
Barabási-Albert numerical
Dichotomous analytical
Dichotomous numerical
Mean-field pair approx.
k = 8

Mean-field pair approx.
k = 2499
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Fully connected numerical

Figure S1. Steady state of the average interface density as a function of the noise parameter a in a linear-logarithmic scale
and for three different types of networks with mean degree k = 8: Erdös-Rényi random network, Barabási-Albert scale-free
network and dichotomous network. A fully connected topology is also included for comparisson. Symbols: Numerical results
(averages over 20 networks, 10 realizations per network and 50000 time steps per realization). Solid lines: Analytical results
[see equation (S68)]. Dashed line: Mean-field pair-approximation (see1) for a mean degree k = 8. Dash-dotted line: Mean-field
pair-approximation for a mean degree k = 2499. The interaction parameter is fixed as h = 1 and the system size as N = 2500.

References
1. Diakonova, M., Eguı́luz, V. M. & San Miguel, M. Noise in coevolving networks. Phys. Rev. E 92, 032803 (2015).

13/13


	Master equation
	Equation for the time evolution of the first-order moments "426830A si "526930B 
	Equation for the time evolution of the second-order cross-moments "426830A si sj "526930B 
	Variance of n
	Asymptotic approximations for the variance of n
	Critical point approximation
	Order parameter: the interface density 
	Autocorrelation function of n
	Suppementary Figure S1
	References

