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We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not support such
tails. Linear relaxation is found to be a borderline case in which long tails are exponentially suppressed in time
but not eliminated. Relaxation stronger than linear suppresses long tails immediately, but may lead to strong
transient peaks in the probability distribution. We also find that a δ-function initial distribution under stronger
than linear decay displays not one but two different regimes of diffusive spreading.
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I. INTRODUCTION

Probability distributions with long tails or diverging mo-
ments have fascinated both scientists and nonscientists over
many decades because of the unanticipated and even strange
behavior that they frequently imply in a large variety of
problems ranging from physics, biology, and engineering, to
economic and other societal scenarios. Recently, stochastic
processes giving rise to such long-tailed distributions have
received a great deal of attention because modern technologies
have made associated measurements ever more feasible [1].
Our specific purpose in this paper is to investigate how
distributions that initially have long or fat tails evolve under
stochastic dynamics that do not support such tails.

In view of its wide applicability, we note with some
surprise the fact that this problem as described by a Langevin
equation with additive white noise seems largely absent in
the literature. As we will see, traditional (overdamped) linear
Langevin dynamics turn out to be a very interesting borderline
case, exhibiting sustained long tails which, however, decay
exponentially in time. Langevin equation dynamics with decay
rates stronger than linear instantly destroy fat tails, but these
may instantly show up as transient maxima in the probability
distribution as it relaxes to its steady-state form. While we
have not found a discussion of these dynamics, we note that
the literature is replete with nonlinear Langevin equation
descriptions [2]. Examples of specific stochastic systems
and behaviors described by nonlinear Langevin equations
include fluid relaxation [3], nonlinear wave interactions [4], the
nonlinear dielectric relaxation of asymmetric top molecules
[5], the theory of nonlinear elasticity [6], saturation in dilute
solutions [7], Brownian motion in a tilted potential [8],
diffusion with velocity-dependent friction [9], and diodes
as thermal engines [10]. As a more abstract mathematical
problem, nonlinear Langevin equations have been discussed in
normal form analysis in the presence of noise [11], the effect of

the noise on sweeping through a bifurcation [12] or crossing an
imperfect bifurcation [13], the connection with intermittency
[14], the excitation of pseudoregular oscillations induced by
noise [15], and the approach to equilibrium in a logarithmic
potential [16].

Indeed, entire books and extensive articles have been
written addressing the problem of noise in nonlinear dynamical
systems, including Coffey’s broad coverage of the Langevin
equation in physics, chemistry, and electrical engineering [8],
the volumes edited by Moss and McClintock on noise in
nonlinear dynamical systems [17], and Rzoska and Zhelezny’s
collection on nonlinear dielectric phenomena in complex
liquids [18]. As a far-reaching continuing topic of interest we
mention the broad arena of Brownian motors, many models
of which are based on nonlinear Langevin equations, cf.
the review in Ref. [19]. And finally, we end this list of
applications and coverage of nonlinear Langevin equations
with the quintessential and perhaps most broadly known
problem of Kramers’ escape over a potential barrier [20]. All
of these problems are affected by the behavior discussed herein
on initial conditions with fat tails.

Before launching into an analysis of our fat-initial-tail
problem, we note that in the process of relaxing to the steady
state we observe another interesting phenomenon that we
have not seen discussed. While the usual expectation is that a
δ-function initial condition spreads diffusively until it reaches
the steady-state form, this happens only in the case of linear
dynamics. When the decay rates are stronger than linear, the
relaxation to the steady state displays not one but two distinctly
separate regimes of diffusive spreading. We examine the origin
of this phenomenon and determine the time at which the
relaxation process transitions from one to the other.

To arrive at an understanding of the stochastic dynamics,
we begin by analyzing the deterministic dynamics of equations
of the form dx/dt = −γ xα where α � 1. These dynamics,
simple as they are, already exhibit the underlying reasons
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for the unusual stochastic relaxation. We dedicate Sec. II to
this analysis for δ-function initial conditions. These results
in turn already reflect the interesting behavior found, still
with deterministic dynamics, when the initial condition is
distributed. This is covered in Sec. III. In the next two
sections we add noise to the system, first in the case of
linear relaxation in Sec. IV and then for nonlinear relaxation
in Sec. V. We conclude with a short summary in the
final section. Some mathematical details are relegated to an
Appendix.

II. DETERMINISTIC DYNAMICS

A direct integration of the deterministic evolution equation

dx

dt
= −γ xα (1)

leads to x1−α
t = x1−α

0 + (α − 1)γ t , or

xt = x0[
1 + (α − 1)xα−1

0 γ t
] 1

α−1

, (2)

where x0 is the initial condition. In the limit α → 1, Eq. (2)
reduces to the familiar exponential solution xt = x0e

−γ t .
Without loss of generality we set γ = 1, since this can always
be achieved by rescaling the time variable, t → γ t . The
solution (2) is a well-defined real function for all values of x

regardless of the value of α if the initial condition is positive,
x0 > 0. If the initial condition is negative, x0 < 0, then the
requirement that xα−1 be a well-defined real function for
all values of x is satisfied, for instance, if α is an integer.
Alternatively, we could replace Eq. (1) with ẋ = −γ x|x|α−1

to remove the requirement that α must be an integer. All
subsequent formulas are then valid for all x if we replace
xα−1 by |x|α−1.

We point out the following peculiar features of the above
solution, see for example Ref. [21]. For α > 1, the decay rate
xα becomes very strong for x large, so much so that infinity
moves down to a finite value x+

t at any finite time t . More
precisely, the entire positive x axis x ∈ [0,∞) is, for any finite
time t , mapped by the dynamics into a finite interval [0,x+

t ),
with

x+
t = 1

[(α − 1)t]
1

α−1

. (3)

This value is obtained by considering the limit x0 → ∞ in
Eq. (2). Note that one can rewrite Eq. (2) in the following
more compact form:

xt

x0
= [1 + (x+

t /x0)1−α]
1

1−α . (4)

On the other hand, for 0 < α < 1, the decay rate xα of Eq. (1)
remains significant for small x, so much so that all initial values
smaller than a threshold value x−

t will hit zero in a finite time
t . More precisely, the interval x ∈ [0,x−

t ) is mapped by the
dynamics into 0 in the finite time t , with

x−
t = [(1 − α)t]

1
1−α . (5)

This value is obtained by finding the value x0 for which the
denominator of Eq. (2) vanishes, 1 + (α − 1)xα−1

0 t = 0.

We mention in passing that one finds related opposite
phenomena, i.e., reaching infinity or escaping zero in a
finite time, by considering y = 1/x with ẏ = y2−α , with the
understanding that the solution to such an equation is only
unique if the speed ẏ has no singularity at the initial point [21].

In the following, we focus on Eq. (1) with α � 1. We will
illustrate several results for the particular choice α = 3. In this
case one has:

xt = x0√
1 + 2tx2

0

, x+
t = 1√

2t
. (6)

These results are valid for all real values of x, with
x ∈ (−∞,+∞) mapped by the dynamics into the interval
(−x+

t ,+x+
t ).

III. DISTRIBUTED INITIAL CONDITIONS

The dynamics (1) with α > 1 maps all the large initial
conditions to the neighborhood just below x+

t . This raises
the question as to what happens when the initial probability
distribution has a fat tail, i.e., carries a significant probability
weight for large x values. Let P0(x) denote the distribution of
the initial conditions x0. The probability distribution Pt (x)
for the resulting x values at time t is obtained from the
conservation of probability upon transformation of variables
(that is, from x0 to x = xt ):

Pt (xt ) = P0(x0)

∣∣∣∣dx0

dxt

∣∣∣∣. (7)

By solving for x0(xt ) and calculating the derivative dx0/dt =
(x0/xt )α from (1), one thus finds:

Pt (x) = P0

⎧⎨
⎩x

[
1 −

(
x

x+
t

)α−1
] 1

1−α

⎫⎬
⎭

[
1 −

(
x

x+
t

)α−1
] α

1−α

(8)

for x ∈ (−x+
t ,+x+

t ), and Pt (x) = 0 otherwise.
To study the possible accumulation of probability for Pt (x)

in the vicinity of x+, we consider the following fat tail:

P0(x) ∼ x−β. (9)

One finds from Eq. (8) for x smaller than, but close to, x+
t

Pt (x) ∼ x−β [1 − (x/x+
t )α−1]

α−β

1−α . (10)

We conclude that the distribution Pt (x) has a divergence for
x → x+

t for a sufficiently strong fat tail, i.e., when β < α. The
divergence is normalizable since β > 1 in order for P0 to be
normalizable. For β = α, Pt (x) converges to a nonzero value
for x → x+

t , while Pt (x+
t ) = 0 for β > α.

As an interesting particular case, we focus on Lorentzian
initial conditions,

P0(x) = λ

π

1

λ2 + x2
. (11)

One finds from Eq. (8)

Pt (x) = λ

π

[1 + (1 − α)txα−1]
α

1−α

λ2 + x2[1 + (1 − α)txα−1]
2

1−α

(12)
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FIG. 1. (Color online) Time evolution of an initial Lorentzian
distribution Eq. (11) with λ = 1 under the deterministic dynamics
Eq. (1) with α = 3, γ = 1 (t = 0, 0.04, 0.05, 0.10). The initial
distribution t = 0 is shown as a black curve. Time increases from
black to brown (t = 0.10). Note the divergences of the probability
distribution at the endpoints of the interval (−1/

√
2t,1/

√
2t).

for x ∈ (−x+
t ,x+

t ), and Pt (x) = 0 otherwise. In particular, one
has for α = 3 (see also Fig. 1):

Pt (x) = λ

π

1√
1 − 2tx2[x2 + λ2(1 − 2tx2)]

,

x ∈ (−1/
√

2t,1/
√

2t). (13)

Note the divergences at the endpoint of the interval
[−1/

√
2t,1/

√
2t). In particular,

Pt (x)x→1/
√

2t ∼
√

2 t

π
√

1 − x
√

2t
. (14)

IV. LINEAR RELAXATION WITH NOISE

Our main purpose is to study the relaxation in the presence
of additive noise. No exact analytic results are available for the
case of nonlinear relaxation. Hence we first turn to the study of
linear relaxation with the exponent α = 1. As we show below,
this case can be studied in analytic detail, with the additional
bonus that it is an interesting and revealing borderline case, in
particular with respect to the persistence of the long tails. We
consider the following linear Langevin equation:

dx

dt
= −γ x + ξ, (15)

with ξ Gaussian white noise with mean value and correlations:

〈ξ (t)〉 = 0, (16)

〈ξ (t)ξ (t ′)〉 = 2Dγδ(t − t ′). (17)

In the following, we again set γ = 1 by a suitable rescaling of
the time variable t → γ t and the noise intensity D → D/γ .
One could also scale out the noise intensity (i.e., set D = 1 by
a redefinition of variables provided D > 0), but we keep the
D dependence in order to reproduce the noiseless limit D =
0 discussed in the previous section. The equivalent Fokker-

Planck equation reads:

∂Pt (x)

∂t
= ∂

∂x
[x Pt (x)] + D

∂2

∂x2
Pt (x). (18)

The exact solution for the probability distribution Pt (x),
starting from a δ-function distribution P0(x) = δ(x − x0), is
a Gaussian with first two central moments

μt = 〈x〉t = x0e
−t , (19)

σ 2
t = 〈(δx)2〉t = D(1 − e−2t ). (20)

For a general initial condition P0(x) one thus finds:

Pt (x) =
∫

dx0
e

−(x−μt )2

2σ2
t

σt

√
2π

P0(x0). (21)

We now introduce the Fourier transform, P̂t (k) =∫ ∞
−∞ dx eikxPt (x), which coincides with the moment-

generating function:

〈eikx〉t =
∞∑

n=0

(ik)n

n!
〈xn〉t , (22)

when all moments exist. One finds:

P̂t (k) = e− 1
2 σ 2

t k2
P̂0(k e−t ), (23)

where P̂0(k) is the Fourier transform of the initial distribution
P0(x). This result leads to the following general conclusion.
Consider an initial distribution with a long tail in the sense that
some or all of its moments are divergent. The divergence of
moments is equivalent to the fact that the moment-generating
function cannot be written as a Taylor expansion around k =
0, i.e., it is a nonanalytic function of k at k = 0. According
to Eq. (23), this nonanalyticity will not be removed and in
fact will persist for all time while keeping the same character
(same type of nonanalyticity). Nevertheless, the influence of
the nonanalyticity is suppressed exponentially in time. We
conclude that, while strictly speaking, any type of long tail
will persist in the same form for all finite times, its effect will
become very difficult to observe for times much longer than
the decay time as its weight is exponentially suppressed.

To investigate the situation in more detail, we turn to
Lorentzian initial conditions, cf. Eq. (11). From the known
result

P̂0(k) = e−λ|k|, (24)

we get

P̂t (k) = e−|k|λt− 1
2 σ 2

t k2
, (25)

λt = λe−t . (26)

Transforming back to real space, one obtains after a simple
manipulation,

Pt (x) = 1

π

∫ +∞

−∞
dk P̂t (k)

= e−μ2
t /2σ 2

t

π

∫ ∞

μt/σ
2
t

dq cos
(

x

(
q − μt

σ 2
t

))
e− 1

2 σ 2
t q2

.

(27)
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FIG. 2. (Color online) Convergence of the initial Lorentzian dis-
tribution to the Gaussian distribution under linear Langevin evolution.
The initial distribution is shown as a black curve. Time increases
from bottom to top. The dotted curve is the steady-state Gaussian
distribution.

Using the tabulated integral∫ b

0
dx cos(2ax)e−x2 = e−a2

4

√
π [erf(b + ia) + erf(b − ia)]

as well as the property erf(z) = erf(z), Eq. (27) can alterna-
tively be expressed as

Pt (x) = 

[
e−(x−iλt )2/2σ 2

t

σt

√
2π

erfc

(
ix + λt

σt

√
2

)]
, (28)

where erfc(z) = 1 − erf(z) is the complementary error func-
tion. The time evolution of the probability distribution starting
from an initial Lorentzian form to the final Gaussian shape can
be observed in Fig. 2.

In the limit of vanishing noise, D → 0, this result reduces
to the deterministic limit, cf. limit α → 1− of Eq. (12):

lim
D→0

Pt (x) = 1

π

λt

x2 + λ2
t

, (29)

where we have used the following asymptotic form of the error
function, cf. [22]:

erfc(z)|z|→∞ ∼ e−z2

z
√

π
. (30)

This asymptotic form assumes arg(z) < 3π/4, a condition
satisfied by the argument of the error function in Eq. (28).

Turning to the long-time limit t → ∞, one finds that the
distribution function Eq. (28) converges, as expected, to the
Gaussian stationary solution of Eq. (30):

P st (x) = e− x2

2D√
2πD

. (31)

However, the approach to this asymptotic result retains, at all
finite times, the trace of the initial long-tailed distribution.
Indeed, as already indicated via the analysis in Fourier space,
cf. Eq. (25), the asymptotic decay of the distribution as 1/x2 for
x → ∞ persists for all times, even though it is exponentially
suppressed in time. This can be derived directly from the
explicit expression Eq. (28) for the probability density, by

FIG. 3. (Color online) Tails of the distributions shown in Fig. 2
on a log-log plot. Dotted lines represent fits: ax−2. The amplitude a

decreases exponentially with time as shown in the inset.

again invoking Eq. (29) (see also Fig. 3):

Pt (x)|x|→∞ ∼ λe−t

π
x−2. (32)

V. NONLINEAR RELAXATION WITH NOISE

We now turn to the investigation of the behavior of long-
tailed distributions under nonlinear relaxation with noise,

dx

dt
= −γ xα + ξ, (33)

with equivalent Fokker-Planck equation

∂Pt (x)

∂t
= ∂

∂x
[γ xα Pt (x)] + D

∂2

∂x2
Pt (x). (34)

We first note that a simple dimensional analysis leads to the
general scaling relation

Pt (x; D,γ ) =
(

γ

D

) 1
α+1

Pτ (ζ ), ζ =
(

γ

D

) 1
α+1

x,

(35)
τ = (γ 2Dα−1)

1
α+1 t,

which, without loss of generality, allows us to set γ = D = 1
in the Fokker-Planck equation.

An object of prime interest is the Green’s function Gt (x|x0),
i.e., the solution of Eq. (33) for the initial condition P0(x) =
δ(x − x0). The general solution of Eq. (33) can then be written
as:

Pt (x) =
∫

dx0Gt (x|x0)P0(x0). (36)

When comparing with the linear case, cf. Eq. (21), two
different difficulties are encountered in the application of this
result, for example to an initial Lorentzian distribution. First,
the explicit expression for Gt (x|x0) is not known. Second,
and in our context more importantly, Gt (x|x0) does not have
the simple dependence on x − const × x0, which, in the linear
case, allowed us to write the above integral as a convolution.
That led to the simple explicit expression Eq. (23) in Fourier
space, with the immediate conclusion that initial long tails in
the linear case survive for all times. As we will see below, and
as expected from the previous deterministic analysis, this is no
longer the case for stronger than linear relaxation.
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Before turning to a numerical solution of Eq. (34), we
present a perturbative solution for the Green’s function,
revealing a surprising feature about the interplay between
nonlinear relaxation and noise. We suppose that the stochastic
trajectory x starting at a given initial position x0 can be well
approximated by the deterministic trajectory xt starting at
the same initial position, x = xt + δx with δx small. This
approximation is expected to be valid for short times. The
explicit form for xt is given in Eq. (2). The equation for δx

reads:

d

dt
δx = −α xα−1

t δx + ξ, (37)

where we neglected terms of order (δx)2. This approximation
is expected to be valid when 〈(δx)2〉t � x2

t . We conclude
that δx is a Gaussian random variable, hence we need only
evaluate its first two moments. Since the initial condition for
the deterministic trajectory is the same as the initial condition
of the stochastic trajectory, we have that 〈δx〉t=0 = 0 and hence
〈δx〉t = 0 at all times. For the second moment 〈(δx)2〉t , we find:

d〈(δx)2〉t
dt

= −2α xα−1
t 〈(δx)2〉t + 2 (38)

= − 2α

(α − 1)t + x1−α
0

〈(δx)2〉t + 2. (39)

We conclude that the short time motion corresponds to the
deterministic trajectory, onto which is superimposed a Brow-
nian motion in a harmonic well with spring constant softening
as 1/time. This has the following surprising consequence.
The Green’s function is Gaussian in the short-time limit, but
displays two different diffusive regimes. Indeed, one finds from
Eq. (38) that

〈(δx)2〉t = 2
∫ t

0
dτ

{
(α − 1)τ + x1−α

0

(α − 1)t + x1−α
0

} 2α
α−1

, (40)

where we used the fact that 〈(δx)2〉t=0 = 0. At very short times,
the ballistic deterministic dynamics (∼t) is slow compared to
the diffusion induced by the noise term (∼√

t), and we have a
usual diffusive regime:

〈(δx)2〉t = 2t for x1−α
0 � (α − 1)t, (41)

cf. the similar expression in the short-time regime for linear
relaxation, Eq. (20). In the case of nonlinear relaxation, for
instance α = 3, the time regime in which this behavior can
be observed is very small for x0 > 1. For longer times [but
still short enough such that 〈(δx)2〉 � x2

t ], one, however,
finds a second diffusive regime, but with suppressed diffusion
coefficient:

〈(δx)2〉t = α − 1

3α − 1
2t for x1−α

0 � (α − 1)t. (42)

The suppression is by a factor 4 for α = 3 and by a factor
7/2 for α = 5. Note that the crossover time between the
two regimes is given by the condition x0 = x+

t , that is, the
crossover time for a given x0 is equal to the time needed for
the deterministic dynamics to come down to x0 from infinity,
cf. Eq. (3). In particular, the time diverges for the case of
linear relaxation α = 1, and hence this second diffusive regime
ceases to exist in that case.

One can use the short-time Gaussian form for the Green’s
function to get an approximate solution for distributed initial
conditions, namely:

Pt (x)t→0 ≈
∫

dx0
e

−(x−xt )2

2σ2
t

σt

√
2π

P0(x0), (43)

where xt is the deterministic trajectory specified in Eq. (2)
and σ 2

t = 〈(δx)2〉t , as given in Eq. (42). A numerical analysis
confirms that this approximation is quite good in this time
regime for large x0 and, therefore, correctly reproduces the
short-time behavior of the tail of the distribution. By changing
variables x0 → xt we can use the property P det

t (xt )dxt =
P0(x0)dx0 where P det

t (xt ) is the deterministic pdf as given in
Eq. (8). Hence one can explicitly perform the Fourier transform
of Eq. (43):

P̂t (k) = e− σ2
t
2 k2

P̂ det
t (kxt ). (44)

It is difficult to obtain exact analytic results valid for all
times, so we next turn to numerical simulations. These were
obtained from the integration of the Fokker-Planck equation
using the numerical method described in the Appendix.

First, we confirm the existence of the two different diffusive
regimes. We numerically evaluate the Green’s function starting
from the value x0 = 5 for α = 3 and α = 5. We clearly
identify three time regimes. In the first two time regimes,
the Green’s function is Gaussian, but displays the above
predicted switch over from a 〈(δx)2〉t ∼ 2t to a 〈(δx)2〉t ∼
α−1

3α−1 2t behavior. This is illustrated in more detail in Fig. 4,
where we plot 〈(δx)2〉t as a function of time. The third time
regime corresponds to the relaxation to the steady state, with
a saturation value∫ ∞

−∞ dx x2e−xα+1/α+1∫ ∞
−∞ dx e−xα+1/α+1

= 0.675978 . . . , α = 3

= 0.578617 . . . , α = 5. (45)

Second, in Fig. 5 we reproduce the relaxation of an initial
Lorentzian distribution in a potential with α = 3. Again, the
numerical results are in full agreement with the analysis given
above. We recall that the deterministic relaxation projects
the entire real axis onto a finite interval (−x+

t ,x+
t ), with

normalizable divergences at the boundaries. The effect of
the additive noise is to wash out the divergences, leading to
Gaussian peaks in the vicinity of ±x+

t , with diffusive spreading
described by Eq. (42), 〈(δx)2〉t ∼ t/2. Both peaks move in
towards zero relatively slowly, as 1/

√
t . This picture is valid for

short to intermediate times. Note also the somewhat surprising
nonmonotonic behavior in time of the probability density in the
vicinity of x = 0. Probability mass first flows out of this region,
with the density decreasing below the Lorentzian values. At a
later time, the probability peaks generated by the deterministic
dynamics from the tails of the initial distribution bring in
probability mass towards the center region, and the probability
density again increases to finally attain its steady-state value,
which is above the Lorentzian value. The appearance of
the additional peaks is however not a feature unique to the
Lorentzian initial state. It can happen for other appropriate
initial distributions. They have to be such that the initial peak
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FIG. 4. (Color online) Plot of the time dependence of the vari-
ance 〈(δx)2〉t of the probability distribution Pt (x).The numerical
results of the integration of the Fokker-Planck equation Eq. (34) are
given by the red curves, while the dots denote the results of a direct
numerical integration of the Langevin equation using the stochastic
Heun method. Left column: α = 3; right column: α = 5. The initial
condition is a δ function centered at x0 = 5. We clearly see the three
regimes predicted by the theory. Top: early time with normal diffusion
where the variance 〈(δx)2〉t grows as 2t indicated by green lines, cf.
Eq. (41). Middle: intermediate time with a reduced diffusion, the
variance growing as t/2 for α = 3 and as 4t/7 for α = 5, indicated
by green lines, cf. Eq. (42). Bottom: late-time saturation where the
asymptotic values, indicated by green lines, are given by Eq. (45).

value is below the steady-state value, while the corresponding
initial peak steepness is larger than that of the steady state. The
latter condition ensures that probability will initially flatten
with probability leaving the peak region, while the former one
implies that probability mass ultimately has to return to the

FIG. 5. (Color online) Probability distribution functions ob-
tained from a numerical integration of the Fokker-Planck equation,
Eq. (34), for α = 3 and γ = 1, D = 1 using the method explained
in the Appendix. The initial condition is the Lorentzian distribution
Eq. (11) with λ = 1. From red to purple (outwards to inwards) the
curves correspond to t = 0, 0.01, 0.1, 0.5, 1, 10, the last curve coin-
ciding exactly with the stationary distribution Pst(x) =

√
2


(1/4) e
−x4/4.

peak to restore the steady-state value. Both conditions are met
for the initial Lorentzian distribution.

VI. DISCUSSION

A large number of phenomena in science are described in
terms of linear dynamics. Yet, linear relaxation, ẋ = −x and
the concomitant exponential dependence on time, exp(−t),
describe borderline situations when compared to nonlinear
dynamics ẋ = −xα , with α �= 1. For example, if an initial
condition includes contributions at x → ∞, the exponential
takes an infinitely long time to bring these contributions down
from infinity. Any initial condition takes forever to reach
x = 0. In other words, any initial contribution that decreases
with time takes an infinite time to reach the final condition. This
is no longer the case when nonlinear relaxation is considered.
Trajectories come down from infinity instantaneously for
an exponent α > 1, while trajectories corresponding to an
exponent α < 1 hit zero in a finite time.

In this paper, we showed that linear dynamics remains a
borderline case in the presence of additive noise (ẋ = −xα + ξ

with ξ Gaussian white noise). We focused on the comparison
between linear relaxation α = 1 and nonlinear relaxation with
α > 1. We found that linear dynamics will sustain long tails
for all times, if initially present, even though the weight of
these tails is suppressed exponentially in time. Nonlinear
relaxation, however, will instantaneously kill any long tails.
As an unexpected byproduct of our analysis, we mention the
discovery of a second diffusive regime for noisy nonlinear
dynamics. By this we mean the following. The propagator
(Green’s function) for the linear Langevin equation is exactly
Gaussian. The average follows the exponential decay dictated
by the deterministic dynamics. The variance σ 2 displays the
expected short-time diffusive behavior σ 2 = 2Dt , where D is
the noise intensity, followed by saturation towards the steady
value for larger times. For nonlinear dynamics with additive
noise, the propagator is still Gaussian in a short-time regime.
The average again reproduces the (nonlinear) deterministic
dynamics. The variance has an interesting behavior different
from that of the linear problem. Apart from the usual short-
time behavior σ 2 = 2Dt , which the nonlinear problem also
exhibits, another regime of linear dispersion follows as time
increases, but with reduced coefficient, i.e., σ 2 = 2D′t with
D′ = D(α − 1)/(3α − 1). This second regime of suppressed
diffusion is actually the dominant regime before the saturation
to the steady state, for initial conditions starting sufficiently far
away from zero. The crossover time between the two regimes
scales as x1−α

0 /(1 − α), which diverges as α → 1. Therefore,
notably, the second regime is completely absent for linear
dynamics.
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APPENDIX: NUMERICAL INTEGRATION OF EQ. (34)

For the numerical integration of Eq. (34) we have used
a splitting method [23] combining the exact solutions of the
purely deterministic (D = 0) and purely stochastic (γ = 0)
limits of the equation. They read respectively [we use the
notation P (x,t) for Pt (x)]

P (x,t + h) = [1 + (1 − α)γ hxα−1]
α

1−α

×P {x[1 + (1 − α)γ hxα−1]
1

1−α ,t}, (A1)

P̂ (k,t + h) = e−Dhk2
P̂ (k,t), (A2)

where we use the expression in Fourier space for the
stochastic solution. In the numerical method we discretize
space xi = idx, i ∈ [−M + 1,M]. Hence, Pi(t) accounts for
the probability in the whole interval [xi,xi+1). After setting the
initial condition Pi(t = 0), the method works as follows:

(i) Given xi, i ∈ [−M + 1,M], compute x ′
i = xi(1 + (1 −

α)γ hxα−1
i )

1
1−α ≡ aixi . Find the index i ′ = floor[x ′

i/dx]. [The
function floor[z] is defined as the largest integer less than or
equal to the real (positive or negative) number z]. Implement
Eq. (A1) using linear interpolation in the interval [xi ′ ,xi ′+1),

namely:

P ′
i (t) = aα

i {[Pi ′+1(t) − Pi ′ (t)] · (iai − i ′) + Pi ′ (t)}. (A3)

(ii) Compute the Fourier transform P̂ ′
q(t) of P ′

i (t) with
q ∈ [−M + 1,M]. Apply Eq. (A2) using

P̂q(t + h) = e−Dhk2
q P̂ ′

q(t), kq = π

Mdx
q. (A4)

Invert the Fourier transform to find Pi(t + h).
Although this method is accurate only to order O(h), we

have found it more convenient than the use of a finite difference
expression for the partial derivatives and then a higher-order
precision integration method, such as second-order Runge-
Kutta. It is known that the von Neumann stability analysis
leads to the Courant-Friedrichs-Lewy criterion that determines
that the time step h should vary as the square of the spatial
discretization step, (dx)2, and therefore this method requires
very small time steps and large integration times [24]. The
splitting method we use, on the other hand, is able to handle
the stiffness of the deterministic part as well as implementing a
very efficient pseudospectral algorithm for the stochastic part.

For the calculations of the Fourier transforms we have
used fast Fourier routines. We typically take M = 216 and
dx = 10−3, so the interval value for x is approximately
(−65.5,+65.5). Depending on initial conditions we use h =
10−3, 10−4, 10−5 and check in every case that results with
smaller values of h do not deviate significantly.
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041111 (2011); ,J. Stat. Mech. (2012) P02001.

[17] See, e.g., Noise in Nonlinear Dynamical Systems,
Vols. 1–3, edited by F. Moss and P. V. E. McClintock
(Cambridge University Press, Cambridge, 1989).

[18] Nonlinear Dielectric Phenomena in Complex Liquids, edited by
S. J. Rzoska and V. P. Zhelezny (Springer, Berlin, 2005).

[19] P. Reimann, Phys. Rep. 361, 57 (2002).
[20] P. Hänggi, Rev. Mod. Phys. 62, 251 (1990).
[21] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applica-

tions to Physics, Biology, Chemistry and Engineering (Westview
Press, Boulder, 1994).

[22] M. Abramowitz and I. A. Stegun, Handbook of mathematical
functions (Dover, Mineola, 1965), formula (7.1.23).

[23] H. Holden, K. H. Karlsen, K.-A. Lie, and N. H. Risebro,
Splitting Methods for Partial Differential Equations with Rough
Solutions, EMS Series of Lectures in Mathematics (European
Mathematical Society Publishing House Seminar for Applied
Mathematics, Zurich, 2010).

[24] R. Toral and P. Colet, Stochastic Numerical Methods (Wiley-
VCH, New York, 2014).

012128-7

http://dx.doi.org/10.1143/PTP.74.1339
http://dx.doi.org/10.1143/PTP.74.1339
http://dx.doi.org/10.1143/PTP.74.1339
http://dx.doi.org/10.1143/PTP.74.1339
http://dx.doi.org/10.1029/JC085iC02p01085
http://dx.doi.org/10.1029/JC085iC02p01085
http://dx.doi.org/10.1029/JC085iC02p01085
http://dx.doi.org/10.1029/JC085iC02p01085
http://dx.doi.org/10.1063/1.3701661
http://dx.doi.org/10.1063/1.3701661
http://dx.doi.org/10.1063/1.3701661
http://dx.doi.org/10.1063/1.3701661
http://dx.doi.org/10.1103/PhysRevE.48.77
http://dx.doi.org/10.1103/PhysRevE.48.77
http://dx.doi.org/10.1103/PhysRevE.48.77
http://dx.doi.org/10.1103/PhysRevE.48.77
http://dx.doi.org/10.1007/s10955-007-9438-2
http://dx.doi.org/10.1007/s10955-007-9438-2
http://dx.doi.org/10.1007/s10955-007-9438-2
http://dx.doi.org/10.1007/s10955-007-9438-2
http://dx.doi.org/10.1209/epl/i1998-00470-4
http://dx.doi.org/10.1209/epl/i1998-00470-4
http://dx.doi.org/10.1209/epl/i1998-00470-4
http://dx.doi.org/10.1209/epl/i1998-00470-4
http://dx.doi.org/10.1007/BF01008324
http://dx.doi.org/10.1007/BF01008324
http://dx.doi.org/10.1007/BF01008324
http://dx.doi.org/10.1007/BF01008324
http://dx.doi.org/10.1007/BF01008325
http://dx.doi.org/10.1007/BF01008325
http://dx.doi.org/10.1007/BF01008325
http://dx.doi.org/10.1007/BF01008325
http://dx.doi.org/10.1016/0375-9601(87)90771-7
http://dx.doi.org/10.1016/0375-9601(87)90771-7
http://dx.doi.org/10.1016/0375-9601(87)90771-7
http://dx.doi.org/10.1016/0375-9601(87)90771-7
http://dx.doi.org/10.1038/314438a0
http://dx.doi.org/10.1038/314438a0
http://dx.doi.org/10.1038/314438a0
http://dx.doi.org/10.1038/314438a0
http://dx.doi.org/10.1073/pnas.85.13.4591
http://dx.doi.org/10.1073/pnas.85.13.4591
http://dx.doi.org/10.1073/pnas.85.13.4591
http://dx.doi.org/10.1073/pnas.85.13.4591
http://dx.doi.org/10.1103/PhysRevLett.102.050601
http://dx.doi.org/10.1103/PhysRevLett.102.050601
http://dx.doi.org/10.1103/PhysRevLett.102.050601
http://dx.doi.org/10.1103/PhysRevLett.102.050601
http://dx.doi.org/10.1007/BF01044713
http://dx.doi.org/10.1007/BF01044713
http://dx.doi.org/10.1007/BF01044713
http://dx.doi.org/10.1007/BF01044713
http://dx.doi.org/10.1103/PhysRevE.84.041111
http://dx.doi.org/10.1103/PhysRevE.84.041111
http://dx.doi.org/10.1103/PhysRevE.84.041111
http://dx.doi.org/10.1103/PhysRevE.84.041111
http://dx.doi.org/10.1088/1742-5468/2012/02/P02001
http://dx.doi.org/10.1088/1742-5468/2012/02/P02001
http://dx.doi.org/10.1088/1742-5468/2012/02/P02001
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251



