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We study general stochastic birth and death processes
including delay. We develop several approaches for
the analytical treatment of these non-Markovian
systems, valid, not only for constant delays, but
also for stochastic delays with arbitrary probability
distributions. The interplay between stochasticity and
delay and, in particular, the effects of delay in the
fluctuations and time correlations are discussed.

1. Introduction

Stochastic modelling plays an important role in many
areas of science, such as physics, ecology or chemistry
[1]. Stochasticity may appear due to the lack of complete
knowledge about all the relevant variables, the precise
dynamics of the system or the interactions with the
environment. In some cases, one can obtain a compact
description of a complicated system considering only
a few relevant variables but at the expense of losing
deterministic predictability. Often, probabilities for some
fundamental processes can be assigned on the basis of
symmetries and other considerations, or on empirical
analysis, and the dynamics of the processes can be
derived bottom-up.

Stochasticity appears together with delay terms in
many situations of interest, such as gene regulation [2—4],
physiological processes [5] or postural control [6,7]. The
combined effects of stochasticity and delay are, however,
not completely understood. From the mathematical point
of view, stochastic processes including delay are difficult
to analyse due to the non-Markovian character. Most
of the previous approaches have focused on stochastic
differential equations that consider continuous variables
[8-12] or random walks in discrete time [13,14], where
delay can be taken into account by increasing the
number of variables. Models with discrete variables
but continuous time are the natural description of
many systems, such as chemical reactions, population
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dynamics or epidemic spreading. In some cases, discreteness can be a major source of fluctuations,
not well captured by continuous models [15]. The approach with discrete variables and
continuous time was used in [4,16-18]. Most often, the delay time is taken to be a constant
with zero fluctuations. This is not very realistic in applications, since it is unusual to have a
deterministic delay when the rest of the dynamics is stochastic. We will take this consideration
into account by allowing the delay times to be random variables with arbitrary probability
density functions.

In this work, we study some simple, yet general, stochastic birth and death processes including
delay. We will develop three different approaches to the analytical study of these kinds of non-
Markovian processes, in the general case of a stochastically distributed delay: a direct approach
in §24, an effective Markovian reduction in §2b,c, and a master equation approach, together with a
time-reversal invariance assumption, in §3. The first direct approach method is interesting for its
simplicity, but its application is limited to systems with first-order reactions and without feedback.
The second one, effective Markovian reduction, is rather flexible and general and its development
is one of the main advances of this paper. The last master equation approach, developed in
[18], complements the previous, giving information about the full probability distribution; here
we apply it to a particular feedback form and derive the phase diagram of the system. The
main limitation of all the approaches is the need to assume that completion times for delayed
reactions are independent random variables (independent of each other and of other variables
of the system), although the initiation rates may depend on the state of the system, allowing,
for example, for feedback and crowding effects, so we do not consider this limitation to be very
relevant for practical applications. Although our methodology is rather general, we present it
here using specific examples that have been grouped in two categories: delay in the degradation
(§2) and delay in the creation (§3). We end the paper with a brief discussion and comments in §4.
Some more technical details are left for appendices A and B.

2. Delayed degradation

We will start by studying simple stochastic birth and death processes that include delay in the
degradation step. A process of this type was proposed in [4] as a model for protein-level dynamics
with a complex degradation pathway.

(a) Simple case

We consider first the simplest possible process including delayed degradation
95X and X=0, 2.1)
T

that is, a particle X is created at a rate C and disappears (‘dies’ or ‘degrades’) a time t after being
created. We allow the delay time 7 to be randomly distributed, i.e. the lifetimes 7 of the created
particles are random variables, that for simplicity, we consider independent and identically
distributed with probability density f(z). Although not considered in this paper, the case of non-
identically distributed delay times, in particular a probability density that depends on the time
from birth, can also be treated. However, as commented earlier, the case of non-independent delay
times does not seem to be tractable with the methods that we present later.

We first note that a distributed delay is completely equivalent to degradation at a rate that
depends on the ‘age’ a (time from creation) of the particle, i.e. processes

X=# and X9 7@ g 2.2)

are equivalent if the rate y (1) and the probability density of the delay f(r) are related by
o= =S = (e 0, 23)
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with F(t) =1 — F(f) being F(t) =Prob(z < t) = [; dzf(r) the cumulative distribution of the delay
time. This is so because y (1) da is the probability of dying at the time interval (a,a + da), if the
particle is still present at 2, and so it is nothing but the probability f(a) da that the delay time ©
belongs to that same interval conditioned to the particle still being alive at time a4, an event with
probability 1:"(11). In the notation of [19], y(a) is nothing but the conditional failure rate. We take
t =0 as the time origin, so the number of alive particles at time ¢t is n(t) =0 for t <0. Let P(n, t) be
the probability of 1 particles being alive at time f. In the remainder of this section, we assume that
there is no feedback, in the sense that the creation rate C is independent of the number of particles
n, but, for the sake of generality, we do allow it to be a function of time C(t). The non-feedback
assumption allows us to obtain a full analytical solution. As shown in appendix A, independently
of the form of the delay distribution, P(1, t) follows a Poisson distribution:

—(n(t)) (n(t)"

P(n,t)y=e
n!

, (2.4)

with average (n(t)) = | 6 d¥' C(#)E(t — #). If the creation rate, C(f), is independent of time, a steady
state is reached, in which the average number of particles is (1)st = C(r), again independently of
the form of the delay distribution.

We will now compute the time correlation function. We shall see that its analytical expression
does depend on the form of the delay distribution. We start from the relation

(n(t +T) | n(t)) = (tnew (t + T) | () + (no1a(t + T) [ n(t)), (2.5)

with nnew (1101q) particles created after (before) t. npew can be computed exactly as before (now
taking t as the time origin), so we have

T
(tnew(t + T) | n(t)) = JO dr'e(t + )BT — t). (2.6)

The evolution of the number of particles already present at t depends on the age a of these
particles. Their survival probability until time t 4+ T can be written as follows:

t
P(alive att 4+ T | alive at t) = J daP(age =a | alive at t)P(lifetime > a + T | lifetime > a)
0

t a =0 i .27
o [hdrcw)Et—t) E JE drc)E —v)

where we used P(a | b) = P(a; b)/P(b), so we find

Jf 4y Ct—0F@ Fa+T) _ [o dfCEE+T—F)

Jo dFCE)EE+T —t)

(o1a(t +T) | n(t)) = n(t) [ drCnEE — 1)

(2.8)
From this, one easily obtains the correlation function: K[n](t,T) = (n(t)n(t + T)) — (n(t))(n(t +
1)) = (n(t){n(t +T) | n(t))) — (n(t))(n(t + 1))

K[nl(t, T) = E dYC(t)F(t+T —t). (2.9)

If C(t)=C, independent of time, a steady state can be reached with correlation function
Kst[n](T) = lim¢— o K[n](¢, T). For a constant rate y, which would be equivalent to an exponential
delay distribution f(r) =y e™77, it has the usual exponential decay Kg[n](T)=(C/ y)e T, For
a fixed delay time 79, corresponding to f(r) =8(r — 19), the correlation function is a straight
line Ks¢[n](T) = C(zg — T) for T < t9 and Ks¢[n](T) =0 for T > rg. For other distributions of delay
time, the correlation function adopts different forms, but it is always monotonically decreasing.
In figure 1, we plot the correlation function for two different types of distribution of delay,
for different values of the variance of the delay. We see that the distribution with fatter
tail displays a slower asymptotic decay, and that the decay is slower as the variance of the
delay increases. Numerical simulations, performed with a conveniently modified version of the
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Figure 1. Process (2.1). Steady-state correlation function, equation (2.9), as a function of time, plotted in logarithmic scale, for
two different types of delay distribution, gamma (solid lines) and lognormal (dashed lines), for two values of the variance of
the delay: (a) 02 = 0.2and (b) o = 5;in both the cases, the average delay is (7 ) = 1and the creation rateis ¢ = 1. We also
plot an exponential decay, e ~* (dashed-dotted lines), for comparison. Note that delay distributions with larger variance and
fatter tails display slower asymptotic decay. (Online version in colour.)

Gillespie algorithm [20,21], are in perfect agreement with this exact result, providing a check
of its correctness. We remark that the functional form of the decay of the correlation function
depends on the delay distribution and can differ from the exponential decay found in systems
without delay.

(b) More elaborated case

We now consider a process including both instantaneous and delayed degradation steps
p-Sx, xLg x2—y, (2.10)
T

that is, particles are created at a rate C and each particle can be eliminated by two processes:
(i) instantaneous degradation at a rate y and (ii) delayed degradation, initiated at a rate D but
completed only a time ¢ after initiation. Again, we will allow the delay-degradation times to
be random variables that, for simplicity, will be independent and identically distributed with
probability density function f().

For the process to be completely defined, one has to specify if a particle that initiates delayed
degradation at time t and thus will disappear at f + 7 (this kind of particle will be called ‘infected’),
can also disappear before the completion of this reaction, through instantaneous degradation. In
the most general case, this can happen at a rate y’, not necessarily equal to y. Note that, in the
case of first-order degradation (' not dependent on the number of particles ), this instantaneous
degradation is completely equivalent to a system with y’ =0, after modifying the distribution of
the delayed-degradation times in the following way:

f(r)— e VT f(r) + e VY E2). (2.11)

That is, when instantaneous degradation is added to infected particles, the probability that the
lifetime is equal to t has two contributions: (i) a particle initially has a lifetime t (probability
density f(r)) and survives up to this time (an event with probability e 7'7) and (ii) a particle
has a lifetime larger than t (probability F (7)), but survives up to t (probability e 7'") and then
undergoes instantaneous degradation (at rate y’). The consideration of these two contributions
leads straightforwardly to equation (2.11). We see that omitting first-order instantaneous
degradation of infected particles involves no loss of generality, given that the treatment is valid
for general distributions of delay.

ssvaror L yoos sue g Siobuusindbaposeiorss [
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If D and y are independent of 1, the process is equivalent to the one-variable system discussed
in §2a with a conveniently modified distribution of delay

T
f(r)—>e DTy, 4 J dfe= D Df(r — ¢, (2.12)
0

This comes from the fact that a particle may disappear at time t, because it did not disappear or
was infected before and is degraded instantaneously (probability density e~ *+P)7y) or because
it got infected at some previous time (') with an appropriate lifetime (zr — #/, probability density
[ 6 dt' e~ (r+D)Y Df(r —t')). This includes as particular cases the ones studied in [17,22]. The results
of §2a allow us to obtain the full solution also in the general case of distributed delay. If D or
y depend on n the processes are not anymore equivalent, two variables are necessary and a
new approach is needed for the analysis. In the following, we develop this method. We will also
consider the case in which the creation rate C depends on the number of particles.
The full process corresponds to the following two-variable system:

PS5 Xn, Xa-1o0 Xa->Xi+27 X1 =1, (2.13)

where we have split the proteins into two types: X are infected particles that will die precisely at a
time 7 (itself a stochastic variable) after being infected and X4 are non-infected (“active’) particles
(so X =Xa U Xj). We allow the rates to depend on n,, the number of X4, active, particles, but
not on ny, the number of Xj, infected, particles which are considered to be ‘inert’; this condition
will be relaxed in §2c. Following the study of Miekisz et al. [17], we have introduced the auxiliary
particles Z whose number is given by the stochastic variable nz(t). Note that each time a particle of
type X1 appears, a particle of type Z also appears, so the process nz(t) is similar to the process ny(t)
but without ‘deaths’ (that constitute the non-Markovian part of the process). The introduction of
Z will allow us to obtain the properties of nj by using the relation

,dnz(t)
d

ni(t) = Ji dt s(t,b), (2.14)

where the discrete process nz(f) is a sequence of step (Heaviside) functions and its derivative
must be understood as a series of Dirac-delta functions. Here, we have introduced the family of
‘survival’ stochastic processes s(t',t) defined in the following way: first, for each ' we obtain
a value of 7(¥) independently drawn from the distribution f(z). Next, we set s(t,f) =1, if
te(t,t + () and s(t,t) =0, otherwise. This can be considered as the indicator function of a
virtual! particle that is infected at # and survives up to a time # + t(t'). It follows from the
definition that
(s(tr, 1) = F(t — 1) (2.15)
and
(s(tr, B)s(t, ) = (s(tr, D) (s(fo, 1)) ift #bp (2.16)
(s(t1, max{t, t'})) ift; =to.

Expressions (2.14)—(2.16) are the main advances of this section and provide us with the
necessary tools to derive the main properties of the stochastic process (2.10). In the case considered
in [17], there is a fixed delay (f(r) =8(r — 19)) and no instantaneous degradation of infected
particles (¥’ = 0), so one has simply n;(t) = nz(t) — nz(t — 7). The inclusion of the survival process
s(#, t) allows us to consider the general case of distributed delay and rates depending on the state
of the system.

Note that the process followed by {14, nz} is a simple Markovian birth and death process:

0-5 Xy, Xa-1o0, Xpa-2>7Z 2.17)

This is so because the variable 111 does not affect the creation or degradation of other variables. The
case in which variables that undergo delay degradation affect other variables will be considered

Is(#,t) is defined for all ¥, regardless of whether a particle is actually infected a time #'. However, it contributes only to (2.14)
if a particle is actually infected at time #', since only then dnz(t')/dt’ # 0.
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in §3. In the present case, the properties of 7 can be obtained using Markovian methods, and the
properties of the variable 11 can be derived afterwards using (2.14)-(2.16). In particular, the first
moments follow:

,d{nz(t))

t
(m(t)) = J, dt T(s(t’, t)) (2.18)

and

t t+T 42 ¢ ¢
(e + )= | an | dtz%

(s(t1, t)s(tp, t + T)). (2.19)
Using standard Markovian methods [1], one can prove that the process {rna,nz} is described by
the master equation

dP(na,nz,t)

= (B = 1)COA)P(na, nz, 1) + (Ex = 1)y (1a)P(1a, 1z, 1)

+ (EAE;" — 1)D(na)P(na, 1z, t), (2.20)

with E; the step operator, E;f(n;, 1)) =f(n; +1, n]-),Ei_lf(ni, nj) =f(n; —1,n;). In this section, we
allow the creation rate C to depend on the number of X particles, constituting a feedback term
on the number of “active’ particles. From the master equation, one easily derives the equations for
the moments, the first of them read

d
WA  (Cna)) ~ (v +Dina), (2.21)
d(nz)
d(ni)
SAL 220015 +1)C(1A) — (214 ~ Dnaly + D)) (2.23)
d(n2)
at =2(Dnangz) + (Dnyp) (2.24)
d
and UML) _ (Clnadnz) — (v + Dynanz) + (DG — na) (2.25)

In the case that C(np) is a linear function of ns and y and D do not depend on np (and
none of them depend on nj or nyz), the system of equations is closed and can be solved. For
nonlinear systems, we will make use of van Kampen’s expansion [1]. This is a standard systematic
expansion of the master equation, that consists of assuming a deterministic, and a stochastic part
for the variables that scale differently with a large parameter, £2 (typically the volume or system
size), i.e. np = QoA (t) + 21265, ny = 2¢,(t) + 21/2¢,. One can then write the master equation
for the new variables £, &7 and expand in powers of £271/2. The method is generically valid,
provided that the rates depend on the variables only through 1, /£2 (plus higher orders in 2 La
common factor depending on 2 multiplying all rates is also acceptable), which is fulfilled by most
systems of interest, and that the macroscopic equations have a steady state as a single attractor.
The equations for the macroscopic components are

don

TR = C(#a) — [ (@A) + D(@a)l6a (226)

and

d¢: _p

i (PA)PA- (2.27)
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The stochastic contributions, to first order in $271/2, read
d -
SA) — 17 + D~ Clonlien), (2.29)
d(z) =
T D{én), (2.29)
d(&3) o154 D o=
a = [V + D = C(¢a)l{Ex) + (7 + D)pa + Clga), (2.30)
d(g2 - -
82— ab(eats) + Do (231)
d - -
and EASZ) — [+ D - Clonlieatz) + D(ER) - 9a), 2.32)

with D=D(¢a) + D'(¢a)da, 7 = v (@a) + ¥ (da)PA. Usually, for the ansatz about the scaling of
the variables to work (and so the expansion), the equations for the macroscopic components must
have a single stable fixed point. In this case, however, the equation for ¢, does not have a fixed
point, and ¢,(t) and (5%(1?)) grow without bound. This growth, nevertheless, is consistent with
(nz (D)) /o2[nz](t) = O(29), and the expansion can still be applied.

Equations (2.28)—(2.32) are a system of closed linear equations and so can always be solved. To
compute the time correlations of #1 from equation (2.19), we need the time correlations of nz. We
note that

(nz(tnz(t)y = Y nzinzaP(nza, ty;nzi, tr) (2.33)

nzinza

= Y. nznpPnz,ta|nz, na,t)P(nz,,na,t)
nziMzaMA

= ((nz(t2) | nz(t1), na(t1))nz(t)), (2.34)

and that (nz(t2) | nz(t1), na(t)) (for tp > t1) can be obtained integrating (2.21)—(2.22) or (2.28)-
(2.29). In the general, nonlinear, case, using first-order van Kampen’s expansion, one obtains,
over the steady state

D
(nz(t)nz(t2)) = 22¢-(t)e=(t2) + 2 [<5§(min{t1, t2}) + ;(éASZ)st(l - e_“tl_tz)} , (2.35)

with u=7+D—-C (past) and ¢ase the solution of C(pa)=(y + D)pa. The derivative that
appears in (2.19) is

dty dtp

with (Eaé7)st = Dase(2C' = (v + D')a,s0)/20%).
Putting all the pieces together, one finally obtains

= 22D} o + 2[Du(Easz)see 1172 + Dop sd(ty — 1)), (2.36)

Kstlnil(t) = (ni(to)m(to + B)st — ()%
- o0 n - o0 o0 R N
= .QDd)A,StJ drF(t+ ) + QDu(sASZ)StJ dsJ drF(s)F(r) e IS, (2.37)
0 0 0
Proceeding in a similar way, one can derive

Kst[na, mil(t) = 2 (Eaéz) stu J T e ), (2.38)
0

lee) R N t R
Kst[m,nA]a)=rz<sAsz>stuJ dt e M F(t + ') + 2D(E3)st J dt' e E(t —t) (2.39)
0 0

and Kstlnal(h = 2(£3)see ™, (2.40)
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(b) 1004

10

Figure 2. Process (2.13). Steady-state correlation function for the total number of particles as a function of time, plotted in
logarithmic scale, for two different types of delay distribution, gamma (cross symbols) and lognormal (plus symbols), for two
values of the variance of the delay: (a) af =0.2and (b) of = 5;inboth cases, the average delay is (t) = 1. The insets show
the time correlation for the number of ‘infected particles, X;, which gives the largest contribution to the difference between
different distributions. Symbols come from numerical simulations and lines from the theoretical analysis equations (2.37)—
(2.41). The creation rate is C(ny) = ¢$2 /(1 + (e(nA/.Q))z), parameter values are: 2 =100,c =1,¢ =04andD=y =
1. (Online version in colour.)

with Kgi[rny,, n,](f) = (nu(tg + Hny(fo))st — (Mu)st(y)st. This finally allows one to express the
correlation function for the total number of particles, n =na + 1y, as

Kst[n](t) = Kst[m1](t) + Kst[na, n1l(t) + Kse[ng, nal(t) + Kse[nal(t). (2.41)

In this case, the average of n again depends only on the average delay, (1)st = £2¢a(1 + D(r)), but
the second moment depends on the delay distribution in a more complicated way, through factors
involving the integral of F(t).

In figure 2, this result is compared with numerical simulations, showing a very good
agreement. Note that the treatment of the delayed reactions is exact, the only approximation
coming from the use of van Kampen’s expansion, which is needed when nonlinearities are
present, but whose error scales as £27'/2. Similar to the previous case, the process in which the
distribution of delay has a fatter tail shows slower decay for the correlation function.

(c) Full feedback

We now consider the case in which the creation rate depends on all present particles
C
p X, X=y, (2.42)
T

with 7 the total (inert + active) number of X particles. As noted before, this single-variable model
can account for instantaneous plus delayed degradation, in the case that the degradation and
‘contagion’ rates, y and D in the previous notation, do not depend on the state of the system. For
simplicity, we restrict our attention to this case. This process can be treated with the approach of
§2b by introducing the additional variable Z,

C
P x4z, X=9, (2.43)

with nz(t) the corresponding random variable giving the number of Z particles. We see that

n(t) = r_ d dnjtft/)s(t’, , (2.44)
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with s(#, t) the same as in §2b. The probability distribution for {1, nz} follows a master equation
of the form
dP(nz,n,t)
dt

Details of the derivation of the master equation in systems with delay are given in appendix B.
Here, g(nz,n) = fgo dt'(C(n(t — t')) | nz(t), n(t))f ('), with f(t) the probability density of the delay
distribution, although, since we are only interested in the properties of the variable n, we will
not be using this expression. The key step in this case is to note that equation (2.45) allows us to
derive the statistical properties (moments and correlations) of nz(t) as a function of those of n(f).
Then, using (2.44) we will be able to self-consistently derive the properties of n. More specifically,
the approach proceeds as follows.

Summing equation (2.45) over 1, we can obtain an equation for the evolution of P(nz, t), but
that still depends on 7 (in this step the contribution of the second term in equation (2.45) vanishes):

dP(nz,t)
dt

= (E7'E;' — 1)C(m)P(nz,n,t) + (E — 1)g(nz, n)P(nz,n,1). (2.45)

=(E;' = 1)) C)P(nz,n,t) = (E;" — D)(C(n(t)) | nz, 1) Plnz, 1). (2.46)

The two times probability distribution P(nz,, t1;nz,, t) follows a similar equation. Conditioning
carefully, summing over the variable n and considering separately the case f; = f, (which turns
out to be singular), we find

d?P(nz,, ti;nz,, )

= (Ez' = )(EZ] = D(Ca(t)Cna(t2)) | nz,,t1,nz,,t2) X Plnz,, ti;nz,,t2)

dty dtp
+8(t1 — t2)[(1 = Ez,)8n, 1y, Bz} + (1= Ez)80y, 1, 1(C(na) | nz,) Plnz,, ).
(2.47)
From (2.44), we easily obtain
! d(nz(t
oty = an =L s, @49
—00 1
and
t ¥ 2
momey =] an [ an UL g s, v, .49
—00 —00 1di2
while (2.46) and (2.47) imply
d(nz)
= (Cm®) (2.50)
and ,
d t t
02O _ (et + st~ )COt). @51
1dfp
And we finally obtain the following set of integral equations for the moments:
t A
(n(t)) =J diy (C(n(t)) F(t — ) (2.52)
and
t v . )
(n(tn(t) = J dty J db2(C(n(t1))C(n(t)) E(t — t)F(E — t2)
t
+ J dt1 (C(n(t))) E(max{t, '} — t1). (2.53)

In the case of linear feedback, C(n) =a + bn, this system of equations is closed. For nonlinear
systems, one can use van Kampen'’s expansion as explained above. In the steady state, one finds

(M)st = 2¢st, st = ClPst)(T) (2.54)
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and

Kse[n](t) = J:O dx J:O dyKstlnl(t + x = E@EQW) + 2 C(¢s’t)J dxF(t + x). (2.55)

Equation (2.54) shows that the steady-state number of particles depends only on the average
delay. Equation (2.55) shows that the correlations depend on the delay distribution in a non-trivial
way. The analysis of this equation is left for future work.

3. Delayed creation

We now turn our attention to the case in which the creation reaction, that is initiated stochastically,
takes a finite time to be completed. For simplicity, we assume that the degradation reaction is
instantaneous. Schematically, we have

@%:Tm, x5, (3.1)

In this case, if the creation rate does not depend on the number of particles, 7, then the delay in
the creation is completely irrelevant, since the probability that a new particle appears at time ¢ is
equal to the probability that its creation started at a time t — r, but this is equal to the probability
that a particle starts its creation at time t (with a shift in the time if C is time-dependent), so the
process is completely equal to one with instantaneous creation.

Following [18], we will adopt here an approach different from that of the previous sections,
that, besides the moments, will allow us to obtain an expression for the full probability
distribution. For completeness, we will explain here the method in some detail. For additional
considerations, the reader is referred to [18]. In appendix B, it is shown that the master equation
of the process (3.1) is

aP(n, t)
ot

=(E — D[ynPm, O]+ (E~' = 1) [Z ro deCHP(W',t — 1;m, t)f(r):|. (3.2)

n'=0
The master equation (3.2) can be written as

aP(n,t)
at

= (E — )[ynP(n,t)] + (E~1 = D[C(n, HP(n, 1)], (3.3)

where the effective creation rate, C(n, t), is given by

Cn, t) = JO def (o) (C'(t — 1)) | n(t)). (3.4)

The conditional probability P(n,t]|ng,ty) follows a master equation identical to (3.2) with all
the probabilities conditioned to ng at time tp. From it, and using that (n(t) | n(tp)) = >, nP(n,t|
n(tp), to), we obtain the following evolution equation for the conditional average:

d(n(t) | n(to)) _

ar y (n(t) [ n(t)) Jo drf (D)(C(n(t — 1)) [ n(to)), (3.5)

for t > tg, with initial condition (n(fg) | n(tg)) = n(ty).

The knowledge of the steady value Cet(n) =limy_, oo C(n1, t) = [ drf () (CH' (¢ — 7)) | n(t)) St
allows the calculation of the steady-state probabilities Pst(11), obtained by imposing dP(n, t)/dt =
in equation (3.3), as [1]

w(k X n—1 _
Pal) = Pa(0) 1‘[ Sl O e, 36)
" k=0

where Pg;(0) is fixed by the normalization condition. All that is left to do now is to compute the
effective creation rate Cg¢(n).
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The effective creation rate will be computed using expression (3.5). In the general case of
nonlinear creation rate, we will use van Kampen’s expansion to linearize C(n) around the
macroscopic component of n. We have C(n) = 2C(¢) + V20 (¢)g, so

(C'(t — 1)) | (b)) = 2C(P(t — 7)) + 2V2C(p(t — D)E(t — ) | £(8)), (37)

and using (3.5) we obtain

d o0
% =—y¢(t)+ J def(1)C(@(t - 1)) (38)
0
and d(E( £ ©
W =y (E®1£¢t) + L def()C'(@(t - T)EE =) | £(to)), 42

t > tp. Equation (3.8) is in general a nonlinear integro-differential equation that can be difficult
to solve. Here, however, we will focus on the cases in which (3.8) has a stable steady state as a
single attractor, which is the solution of y¢ = C(¢). This is the regimen in which the validity of
van Kampen'’s expansion is guaranteed.

We reach now a delicate point. Equation (3.9) is a (linear) integro-differential equation. To
solve it, we would need an initial condition in the whole interval (—oo, ty) but we only know a
one-time condition (§(t =tg) | £(f)) = &(tp). We will circumvent this difficulty by assuming that,
over the steady state, the system is statistically invariant under time inversion, which implies
(E(to + t1) | £(0)) = (§(to — t1) | £(tp)). This condition, together with the value of & at time £, allows
us to find the solution of (3.9). This solution, together with (3.7) and the definition (3.4), yield
the effective creation rate Cg(11). The time-reversal invariance assumption in the steady state is
fulfilled by any Markovian system that follows detailed balance. Our system follows detailed
balance (as any one-step process [1]), but, owing to the presence of delay, it is not Markovian. So
the time-reversal invariance is an assumption, whose validity needs to be checked. It was shown
in the study of Lafuerza & Toral [18] that in this system the assumption is approximately valid.

In the case of constant delay, f(t) =8(t — ), the time-reversal symmetric solution of (3.9) is
[4,18]

(§(to + 1) [ £(t0)) =& (to)h(t1) (3.10)
and
eM _ g eti—0)

T_ge7 if0<t <t

h(t1) = e_V(tl_kr)h(kr) (3.11)
—a [ df R —r)erh), ikt <t <(k+ 17, k=1,2,...
—A
A= J/2 —a? = VT, o= _C/(¢st)

and using (3.7) we finally obtain

C(n) = [C(¢st) — ¢5tC (s)i()] + C'(ds)(7)n, (3.12)

where ¢s; is the steady-state solution of (3.8). From equation (3.6), one can obtain the steady-state
probabilities Ps¢(1). The mean value and variance are given by

(n)st = 2¢st (3.13)

and

2 (1) st
o4 = o .
1—y= @ (dst)(r)
From (3.14), one can see that, interestingly, in the case of negative feedback (C'(¢st) <0), as the
delay is increased the fluctuations change from sub-Poissonian (62 < (1)) to super-Poissonian
(02 > (n)). This is illustrated in figure 3, where we also show the line of the Hopf bifurcation
that the deterministic system undergoes due to the delayed negative feedback [23]. It is usually

(3.14)
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~

super-Poissonian

sub-Poissonian

0 2 4 6

Figure 3. Process (3.1). Relative size of the variance with respect to the mean value for the number of particles, o-2[n] /{(n),in
the - plane, for creation with constant delay and a negative feedback given by a creation rate of the form ¢/(1 4 (€¢)?)
(note that € is a measure of the strength of the negative feedback). The ‘Poissonian line’ (solid line), o-2[n] = (n), obtained
through the approximation (3.14), marks the transition from sub-Poissonian to super-Poissonian fluctuations, while the Hopf
line (dashed line) marks the Hopf transition into oscillatory behaviour in the deterministic system. Parameter values are ¢ =
1,0 =y =1.(Online version in colour.)

obtained that a negative feedback reduces the magnitude of the fluctuations [24], but when delay
is present we see that this negative feedback can change totally its effect, giving rise to an increase
of the fluctuations.

The time correlation function can also be obtained from (3.10), as

Kst[n](t) = ogh(b). (3.15)

In the case of negative feedback, it becomes non-monotonic, developing peaks of alternating
sign at approximately multiples of the delay, signalling the presence of stochastic oscillations.
For positive feedback, the time correlation is always positive, but not necessarily monotonic.

We will finish by noting that the ‘effective Markovian reduction” method used in §2 can also
be used for the case of delay in the creation with feedback. To be completely general, we allow
two delays, one in the creation (with probability density f.(t)) and one in the degradation (with
probability density f4(t)). The process is schematized as follows:

Cl
s x X =9, (3.16)
Tc d

with 7.4 random variables distributed according to f./q(t). With the addition of two new
variables, the process can be rewritten as

C(n)

N—Z+Y, Y=—=X, X=9, (3.17)
Tc T4
which allows us to note that
t d v
n(t) = J ar 2Oy, (3.18)
oo dr

In this case, the survival function §(¢, t) is defined as: §(t',t) =1, if t € (' + tc(t)),t' + tc(t') + q(t'))
and 5(#,t) =0, otherwise, t.(t') and 74(t') being random times obtained from the corresponding
probability distribution functions fc(zc) and f4q(zq). 5(*', t) is equal to one if a virtual particle that
initiated its creation at time #’ finished it at some intermediate time #” < t and since then had a
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lifetime greater that t — t”, so that it is still alive at f, being zero otherwise. It follows that

t—h R
(5, 1) = JO drf(t)Eat — t — 1) (3.19)
and
(3(t1, ) (5(t2, ), ift1 #1,
(3(t1, 1)3(t2, t')) = | (mintt)—t R (3.20)
J dt"fo(t")Fg(max{t,t'} —t; —t"), ift1 =tp.

In the case that the creation rate C(1) does not depend on the number of X-particles, the number of
Z-particles follows a Markovian process (Poisson process), and the properties of 1 can be derived
from (3.18). If the creation rate depends on the number of X-particles, i.e. if feedback is present,
the properties of nz can be derived formally as a function of n and then the properties of n can be
derived self-consistently through (3.18), as done in §2c.

4, Comments and conclusions

In this paper, we have analysed general stochastic birth and death models that include delay.
We have presented three different methods that together constitute a general toolbox to study
stochastic models including delay.

In §2a, we have shown that when the creation rate is independent of the state of the system
(no feedback) and the initiation of the delayed degradation and the instantaneous degradation
are first-order reactions (rate not depending on the state of the system), the process can be solved
fully in an exact fashion for general distributions of delay, showing always Poissonian character
and a monotonically decreasing time correlation function given by (2.9).

In §2b,c, we have considered a more general process with delay in the degradation step,
allowing the initiation of the delay degradation and the instantaneous degradation to be higher
order reactions, as well as the presence of feedback in the creation rate. The method allows one to
reduce the system to a Markovian one, where usual techniques can be used. Explicit expressions
for the time correlation for general delay distributions were obtained. In this case, the correlation
might be non-monotonic, if feedback is present, but typically decreases monotonically.

Section 3 shows that when the delay appears in the creation reaction and feedback is present,
the delay typically has more dramatic consequences. In the case of fixed delay, it is shown that
for negative feedback, the fluctuations are amplified as the delay increases, going beyond the
level found when no feedback is present, and the time correlation function becomes oscillatory,
alternating between positive and negative values at approximately multiples of the delay. In the
positive feedback case, again for fixed delay, the fluctuations are reduced with increased delay
and the time correlation function remains always positive.

Funding statement. We acknowledge financial support by MINECO (Spain), Comunitat Autonoma de les Illes
Balears, FEDER, and the European Commission under projects FIS2007-60327 and FIS2012-30634. L.F.L. is
supported by the JAE Predoc Program of CSIC.

Appendix A. (alculation of P(n, t) in the simple case of delayed degradation

We start by considering the case nn = 0. For the sake of simplicity, we focus on the case with creation
rate, C, independent of time, but the generalization to time-dependent C is straightforward. Since
the time origin is taken at f = 0, the probability of observing zero particles at time ¢ > 0 is equal to
the following limit:

M-1
PO,t) = zv}ii“oo []11 - Cat+CAtF(t —t;) + o(ab)], (A1)
i=0

with At=t/M playing the role of a small time increment and t; =iAt. This expression follows
from the fact that, in order to find the system with zero particles at time f, in every previous

8SH0L07 LLE 05 § SUel] 1yd BioBuystigndiaanosjeforenss


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on August 19, 2013

infinitesimal time interval (#' € [t;,t;11),i=0,...,M — 1) one of the following two (incompatible)
events must take place: either a particle is not created (probability 1 — CAt) or a particle is created
with a lifetime smaller that t — t; (probability CAtF(t — t;)). We now have

M-1

t
log P(0,t) = lim Z [-CF(t — t;) + o(AD] At = —CJ dt'F(t —t), (A2)
M—o00 P 0
with l:"(t) =1 - F(t), so we find
P(0,f) = e~Clo A=), (A3)

Following a similar line of reasoning, P(, t) can be computed as

M-1 M-1 M-1 n
Pn,)y=lim > Y ... > [JICAtE(t—t)] [ [1—CatEE—t). (A4)
M%wilzo =i1+1  iy=i_+1 I=1 0<j<M-1

JF1112,0e i

This expression results from the consideration of choosing the times (t;,...,t;,) at which the n
particles are created and survive up to t. The [th particle is created with probability CAt and
survives up to t with probability F(t — t;). The other factor comes from the fact that at the other
time intervals either a particle is not created or it is created but dies before t.
Using
lim ] [1-CAtE(t —t;)]=e Clo dFE=) (A5)

M—o0 :
0<j=M-1

JFE 2,0

and replacing the sums by integrals in the limit M — oo

t A t . t . cn
J dt; CF(t — tl)J dt,CE(t — tp) - - J dt,CF(t — t,) = — |:
0 ty [ ] n!

Jt dt/F(t—t)] . (A6)

0
we finally obtain

. nr(t 3¢ Be _ o\
o Clb ari—ryC"Lo dF'F(t— )]

P(n,t) = -

, (A7)

that is, a Poisson distribution with average (n(t)) =C f(t) dt’ ﬁ(t —t'). In the steady state (found
as the limit f — 00), the average becomes (n(t)) = C(r). Remarkably, this Poissonian character
is completely independent of the form of the delay distribution. As commented above, this
result can be easily generalized to the case in which the creation rate depends on time, C — C(t),
obtaining again a Poisson distribution with average f(t) drC(t)E(t — t').

Appendix B. Derivation of the master equation in a system with delay

Here, we derive the master equation of the process (3.1). We consider first the case of fixed delay
7. We start with the following identity:

P(n,t+ A)= P(n,t+ A;n',)=P(n,t + A;n+1,) + P(n, t + A;n — 1, 1)
"
+ P(n,t + A;n, t) + o(A). (B1)

It is immediately seen that P(n,t + A;n + 1,£) = y(n + 1) AP(n + 1, t). In the case of fixed delay, the
second sum can be evaluated introducing a tree-times probability as

P(n,t+A;n—1,t):ZP(n,t+A;n—1,t;n/,t—r)
p

=ZP(n,t+ Aln—1,n,t— )P, t —t;n—1,0). (B2)

n
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Now, P(n,t + A |n—1,t;n',t — 1) =C(n')A + 0(A). Expanding in a similar way the term P(n, t +
A;n,t), and taking the limit A — 0, we can obtain the master equation of the process

aP(n,t)
at

=(E = D[ynPn,H]+(E1=1) [Z C )P, t — 1;m, t)] (B3)

n'=0

In the case of distributed delay, we start considering a discrete distribution of delays, i.e. 7=
71,..., T with corresponding probabilities f(z1),...,f(zm). The continuum limit can then be
obtained making M — oo. The creation term in (B 1) can be written as

Pn,t+ A;n—1,8) = Z P(n,t+ A;n—1,tn1,t — 115 .00, E— Tv)

ny,...nm
= Z P(n,t+AIn—1,t;7’l],t—f1;...;nM,Tm)
ny,...,.nm
X P(ny,t —11;...;00m,t — Ta;n — 1, 0). (B4)

Now, P(n,t + Aln—1,Eny,t —1q,..., 00, Tn) = ?il C(nj)f (t;)A + o(A), that is, the probability
that a particle started its creation at time t — 7; with a creation time equal to 7;. Replacing in the
previous equation and performing the appropriate sums, we obtain

M
P(n,t+ A;n—1,0)=> > Co)f(r)P(r, t — 15;n — 1, A + o(A) (B5)

n =1

that in the continuum limit reduces to »_,, jgo drC(n)f(z)P(n’,t — v;n — 1,1). Considering in a
similar way the other terms in (B 1) and taking the limit A — 0 one can obtain the master equation
for distributed delay (3.2).

References

1. van Kampen NG. 2004 Stochastic processes in physics and chemistry. Amsterdam, The
Netherlands: North-Holland.

2. Lewis J. 2003 Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish
somitogenesis oscillator. Curr. Biol. 13, 1398-1408. (doi:10.1016/S0960-9822(03)00534-7)

3. Barrio M, Burrage K, Leier A, Tian T. 2006 Oscillatory regulation of Hesl: discrete
stochastic delay modelling and simulation. PLoS Comput. Biol. 2, e117. (doi:10.1371/journal.
pcbi.0020117)

4. Bratsun D, Volfson D, Tsimring LS, Hasty J. 2005 Delay-induced stochastic oscillations in gene
regulation. Proc. Natl Acad. Sci. USA 102, 14 596-14 598. (d0i:10.1073 / pnas.0503858102)

5. Longtin A, Milton JG, Boss J, Mackey MC. 1990 Noise and critical behavior of the pupil light
reflex at oscillation onset. Phys. Rev. A 41, 6992-7005. (d0i:10.1103 /PhysRevA.41.6992)

6. Milton JG, Cabrera JL, Ohira T, Tajima S, Tonosaki Y, Eurich CW, Campbell SA. 2009 The
time-delayed inverted pendulum: implications for human balance control. Chaos 19, 026110.
(doi:10.1063/1.3141429)

7. Boulet J, Balasubramaniam R, Daffertshofer A, Longtin A. 2010 Stochastic two delay-
differential model of delayed visual feedback effects on postural dynamics. Phil. Trans. R. Soc.
A 368, 423-438. (doi:10.1098 /rsta.2009.0214)

8. Kiichler U, Mensch B. 1992 Langevin stochastic differential equation extended by a time
delayed term. Stoch. Stoch. Rep. 40, 23-42. (d0i:10.1080/17442509208833780)

9. Guillouzic S, L'Heureux I, Longtin A. 1999 Small delay approximation of stochastic
differential delay equations. Phys. Rev. E 59, 3970-3982. (doi:10.1103 /PhysRevE.59.3970)

10. Frank TD. 2002 Multivariate Markov processes for stochastic systems with delays: application
to the stochastic Gompertz model with delay. Phys. Rev. E 66, 011914. (d0i:10.1103 /PhysReVE.
66.011914)

11. Frank TD, Beek PJ, Friedrich R. 2003 Fokker—Planck perspective on stochastic delay systems:
exact solutions and data analysis of biological systems. Phys. Rev. E 68, 021912. (doi:10.1103/
PhysRevE.68.021912)

8SH0L07 LLE 05 § SUel] 1yd BioBuystigndiaanosjeforenss


http://dx.doi.org/doi:10.1016/S0960-9822(03)00534-7
http://dx.doi.org/doi:10.1371/journal.pcbi.0020117
http://dx.doi.org/doi:10.1371/journal.pcbi.0020117
http://dx.doi.org/doi:10.1073/pnas.0503858102
http://dx.doi.org/doi:10.1103/PhysRevA.41.6992
http://dx.doi.org/doi:10.1063/1.3141429
http://dx.doi.org/doi:10.1098/rsta.2009.0214
http://dx.doi.org/doi:10.1080/17442509208833780
http://dx.doi.org/doi:10.1103/PhysRevE.59.3970
http://dx.doi.org/doi:10.1103/PhysRevE.66.011914
http://dx.doi.org/doi:10.1103/PhysRevE.66.011914
http://dx.doi.org/doi:10.1103/PhysRevE.68.021912
http://dx.doi.org/doi:10.1103/PhysRevE.68.021912
http://rsta.royalsocietypublishing.org/

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Downloaded from rsta.royalsocietypublishing.org on August 19, 2013

Ohira T, Yamane Y. 2000 Delayed stochastic systems. Phys. Rev. E 61, 1247-1257. (d0i:10.1103/
PhysRevE.61.1247)

Ohira T, Milton JG. 1995 Delayed random walks. Phys. Rev. E 52, 3277-3280. (doi:10.1103/
PhysRevE.52.3277)

Milton JG, Cabrera JL, Ohira T. 2008 Unstable dynamical systems: delays, noise and control.
Europhys. Lett. 83, 48001. (doi:10.1209/0295-5075/83 /48001)

Aparicio JP, Solari HG. 2001 Population dynamics: Poisson approximation and its relation to
the Langevin process. Phys. Rev. Lett. 86, 4183-4186. (d0i:10.1103/PhysRevLett.86.4183)

Galla T. 2009 Intrinsic fluctuations in stochastic delay systems: theoretical description and
application to a simple model of gene regulation. Phys. Rev. E 80, 021909. (doi:10.1103/
PhysRevE.80.021909)

Miekisz J, Poleszczuk J, Bodnar M, Forys U. 2011 Stochastic models of gene expression with
delayed degradation. Bull. Math. Biol. 73, 2231-2247. (d0i:10.1007 /s11538-010-9622-4)
Lafuerza LE, Toral R. 2011 Role of delay in the stochastic creation process. Phys. Rev. E 84,
021128. (d0i:10.1103/PhysRevE.84.021128)

Papoulis A, Pillai SU. 2001 Probability, random variables and stochastic processes, 4th edn.
New York, NY: McGraw-Hill.

Gillespie DT. 1977 Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81,
2340-2361. (doi:10.1021/j100540a008)

Cai X. 2007 Exact stochastic simulation of coupled chemical reactions with delays. J. Chem.
Phys. 126, 124108. (d0i:10.1063/1.2710253)

Lafuerza LF, Toral R. 2011 Exact solution of a stochastic protein dynamics model with delayed
degradation. Phys. Rev. E 84, 051121. (doi:10.1103/PhysRevE.84.051121)

Tyson JJ. 2002 Biochemical oscillations. In Computational cell biology (eds CP Fall, ES Marland
JM Wagpner, J] Tyson), ch. 9, pp. 230-260. Berlin, Germany: Springer.

Thattai M, van Oudenaarden A. 2001 Intrinsic noise in gene regulatory networks. Proc. Natl
Acad. Sci. USA 98, 8614-8619. (doi:10.1073 /pnas.151588598)

8SH0L07 LLE 05 § SUel] 1yd BioBuystigndiaanosjeforenss


http://dx.doi.org/doi:10.1103/PhysRevE.61.1247
http://dx.doi.org/doi:10.1103/PhysRevE.61.1247
http://dx.doi.org/doi:10.1103/PhysRevE.52.3277
http://dx.doi.org/doi:10.1103/PhysRevE.52.3277
http://dx.doi.org/doi:10.1209/0295-5075/83/48001
http://dx.doi.org/doi:10.1103/PhysRevLett.86.4183
http://dx.doi.org/doi:10.1103/PhysRevE.80.021909
http://dx.doi.org/doi:10.1103/PhysRevE.80.021909
http://dx.doi.org/doi:10.1007/s11538-010-9622-4
http://dx.doi.org/doi:10.1103/PhysRevE.84.021128
http://dx.doi.org/doi:10.1021/j100540a008
http://dx.doi.org/doi:10.1063/1.2710253
http://dx.doi.org/doi:10.1103/PhysRevE.84.051121
http://dx.doi.org/doi:10.1073/pnas.151588598
http://rsta.royalsocietypublishing.org/

	Introduction
	Delayed degradation
	Simple case
	More elaborated case
	Full feedback

	Delayed creation
	Comments and conclusions
	References

