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A. M-states system

We consider here the case in which each particle can be in one of M (instead of 2) possible

states. We will show that the results obtained in the main text for 2−state systems also

hold in this more general case.

We label the states with the subscript α = 0, 1, . . . , M − 1, so in this case the variable

describing the state of particle i can take M possible values, si = 0, . . . , M − 1 (we start the

labeling from 0 to be consistent with the previous case, that would correspond to M = 2).

Let pi(λi, α, t) the probability that particle i, with heterogeneity parameter λi, be on state

α. It satisfies the evolution equation:

dpi(λi, α, t)

dt
=

∑

β

Aα,β(λi)pi(λi, β, t), (1)

with Aα,β a general transition matrix (satisfying
∑N−1

γ=0 Aγ,α = 0), that may depend in

principle on time and on the time that the particle has been on its current state. To isolate

the role of parameter heterogeneity, we assume that the initial condition is the same for all

the particles (or that the initial condition is determined by the value of λi) such that the

solution pi(λi, α, t) = p(λi, α, t) is the same for all particles sharing the same value of the

parameter. The macroscopic state of the system will be described by the set of variables

nα =
∑N

i=1 δα,si
, that is, the number of particles in each state. The averages and variances

of this variables are given by:

〈nα(t)〉 =
N∑

i=1

p(λi, α, t) (2)

σ2[nα(t)] =
N∑

i=1

[
p(λi, α, t) − p(λi, α, t)2

]
. (3)

This variance is again smaller that tat of a system of identical particles with same average,

the difference given by:

σ2[nα(t)]id − σ
2[nα(t)] = Np(α, t)2 − p(α, t)

2
, (4)

a result exactly analogous to the one obtained in the previous case. The heterogeneity

among the particles on the probability of occupation of level α can be derived from the first

moments of the occupation number of the level:

p(α, t)2 − p(α, t)
2

=
〈nα〉 − 〈nα〉2/N − σ2[nα]

N
. (5)

2



Note that, when focusing on the number of particles on state α, the system effectively

reduces to a 2−level one, with states α and no-α, so the results of the previous section can

be translated directly.

A different and some times relevant question can be considered when the labeling of the

states is such that the order is well defined (for example each state corresponds to an energy

level or a distance from a reference). Then the average state is meaningful and we can study

its statistical properties. Below we show that the variance of this mean level is again always

smaller if heterogeneity is present.

The average state of the system is given by L =
∑M−1

α=0 α
nα

N
. It is a random variable

whose average and variance are given by:

〈L〉 = =
M−1∑

α=0

α
〈nα〉

N
=

M−1∑

α=0

N∑

i=1

α
p(λi, α)

N
, (6)

σ2[L] =
M−1∑

α,β=0

αβ

N2
(〈nαnβ〉 − 〈nα〉〈nβ〉) =

1

N2

N∑

i=1

[
M−1∑

α=0

α2p(α, λi) −
M−1∑

α,β=0

αp(α, λi)βp(β, λi)

]

.(7)

We have used p(λi, α) = 〈δα,si
〉 and 〈nαnβ〉 =

∑N
i,j=1〈δα,si

δβ,sj
〉 = 〈nα〉〈nβ〉 +

∑N
i=1[δα,βp(α, λi)− p(α, λi)p(β, λi)]. A system of identical particles that had the same aver-

age occupation of the different levels i.e. pid(λi, α) = 1
N

∑N
j=1 p(λj, α, ) = 〈nα〉

N ∀i, α, would

have and average and variance of the mean level given by:

〈L〉id =
M−1∑

α=0

α
〈nα〉

N
= 〈L〉, (8)

σ2[L]id =
1

N

M−1∑

α=0

α2 〈nα〉

N
−

1

N

M−1∑

α,β=0

αβ
〈nα〉

N

〈nβ〉

N
. (9)

We now define g(λi) ≡
∑

α αp(λi, α) (the average level of particle i), and note that the first

terms in the right-hand side of (7) and (9) are equal, while the second terms can be written

as:

1

N2

N∑

i=1

M−1∑

α,β=0

αp(λi, α)βp(λi, β) =
1

N2

N∑

i=1

g(λi)
2 =

1

N
g2, (10)

1

N

M−1∑

α,β=0

αβ
〈nα〉

N

〈nβ〉

N
=

1

N

[
1

N

N∑

i=1

g(λi)

]2

=
1

N
g2, (11)

which implies that σ2[L]id ≥ σ2[L], i.e. the variance of the mean level is always smaller in

a system of heterogeneous particles, the difference with respect to the case of identical ones

3



being:

σ2[L]id−σ
2[L] =

1

N

(
g2 − g2

)
=

1

N

M−1∑

α,β=0

αβ

[
N∑

i=1

p(α, λi)p(β, λi)

N
−

N∑

i,j=1

p(α, λi)p(β, λj)

N2

]

≥ 0.

(12)

The correction to the variance in this case scales as 1/N , but again is of the same order as the

variance itself, indicating a non-negligible correction. In this case to derive the heterogeneity

of g(λi) over the population one needs to know the average occupation level of each state

〈nα〉 and use:

g2 − g2 =
∑

α

α2〈nα〉/N − 〈L〉2 − Nσ2[L]. (13)

This can be written in terms of the variance of L in an equivalent system of identical particles,

σ2[L]id. If this is known, one can directly use

g2 − g2 = N
(
σ2[L]id − σ

2[L]
)
. (14)

Note that, contrary to the two-level case, now the value of 〈L〉 does not determine σ2[L]id.

B. Intuitive origin of the decrease of fluctuations for independent units

We have shown that a system of independent heterogeneous particles has smaller fluctu-

ations for the collective variable than an equivalent system of identical ones. The origin of

this result is the following (for simplicity we refer to the case of 2-state system):

The average of the global variable is determined by the concentration of the states of the

particles around state 1 (〈n〉 =
∑

i〈si〉). The fluctuations (measured by the variance) of

the global variable are determined by the stochastic fluctuations of the individual particles

alone (σ2[n] =
∑

i σ
2[si], since the particles are independent).

In a system of heterogeneous particles, the dispersion of the states of the particles is due to

the heterogeneity (some prefer to be around sate 0, others prefer to be around sate 1) plus

their intrinsic stochasticity. In a system of identical particles, the dispersion comes from

the stochasticity alone, so for a system of identical particles to have the same concentration

in the states of the particles (global average) than a heterogeneous system, the intrinsic

stochasticity has to be larger. This will give rise to larger fluctuations for the global variable.

In particular, any given rational value of 〈n〉
N = A

B can be obtained with zero fluctuations,

taking A particles that are always at state 1 and B −A particles that are always at state 0.
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This explanation is illustrated in figure (1). In the identical-particles system both particles

fluctuate between 1 and 0. In the heterogeneous case, one particle spends most of the time

at 1 and the other spends most of the time at 0. The probability of finding a given particle

at 1 is the same in both cases (1/2) but in the heterogeneous case most of the time there

is one particle at 1 and one particle at 0, resulting on a value of the average state most

often equal to 1/2, and so with smaller fluctuations. The situation is similar for a larger
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FIG. 1: Time series of a system of two identical (upper panel) and heterogeneous (lower panel)

particles, together with the corresponding average state. Note that the fluctuations of the average

state are more pronounced in the case of the identical particles.

number of particles, as shown in figure 1 of the main text. An analogous picture emerges

when one considers more that 2 states. Note that in every case we compare a system

of heterogeneous particles with another of identical ones that has the same one-particle

distribution i.e. pi(α)id =
∑

j
p(α,λj)

N , ∀i, α.

C. Justification of the Ansatz

The general evolution equations for the first moments are of the form:

d〈si〉

dt
= 〈r+

i 〉 − 〈(r−i + r+
i )si〉, (15)

d〈sisj〉

dt
= −〈qijsjsi〉 + 〈r+

i sj〉 + 〈r+
j si〉. (16)

Our main ansatz is that the m-particle correlations σj1,...,jm(t) = 〈δj1(t) · · · δjm(t)〉 with

δj(t) = sj(t) − 〈nj(t)〉 scale with system size as

σj1,...,jm(t) = O(N−m/2), for jk '= jl. (17)
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We first show how the ansatz (17) allows to close the system (15, 16).

We assume that functional dependence of the rates on the sate variables is of the form

f(s1/N, . . . , sN/N). This includes, for example, rates of the form f(
∑
λksk/N) like the

ones used in the examples analyzed. We further assume that the rates can be expanded as

a power series:

f(s1/N, . . . , sN/N) = a0+
N∑

i1=1

ai1

si1

N
+

1

2!

N∑

i1,i2=1

ai1,i2

si1si2

N2
+· · ·+

1

k!

N∑

i1,...,ik=1

ai1,...,ik

si1 · · · sik

Nk
+. . .

(18)

There are Nk terms in the k’th summand,
N∑

i1,...,ik=1

, giving a total contribution of order

O(N0). The terms in the right hand side of (15) are of the form:

〈si1 . . . sik〉

k!
=

〈(δi1 + 〈si1〉) . . . (δik + 〈sik〉)〉

k!
=

k∑

l=0

δl〈s〉k−l

l!(k − l)!
=

k∑

l=0

O(N−l/2)

l!(k − l)!
, (19)

where δl corresponds to a term of the form 〈δj1(t) · · · δjl
(t)〉, 〈s〉k−l corresponds to

〈si1〉 · · · 〈sik−l
〉 and the last equality holds due to our ansatz. We see that the dominant

terms are those with l = 0, which correspond to products of mean values of the form

〈si1〉 · · · 〈sik〉. We conclude that the ansatz allows to do the substitution 〈si1 . . . sik〉 →

〈si1〉 · · · 〈sik〉 + O(N−1/2) in the evolution equations for the mean values.

The evolution equations for the correlations read:

dσi,j

dt
= 〈(r−i + r+

i )siδj〉 + 〈(r−j + r+
j )sjδi〉 + 〈r+

i δj〉 + 〈r+
i δj〉. (20)

In this case, the terms are of the form 〈si1 . . . sikδr〉 = 〈(δi1 + 〈si1〉) . . . (δik + 〈sik〉)δr〉 with

r = i, j. Due to the presence of δs, the term in which only averages appears vanishes.

Reasoning as before, we see that the dominant terms are those proportional to σil,s, while

those proportional to higher-order correlations can be neglected. In this case, the ansatz

allows to do the substitution 〈si1 . . . sikδr〉 → 〈si1〉 · · · 〈sik〉
k∑

l=1

σir

〈sir〉
+ O(N−3/2). In this

way, the evolution equation for the correlations depend, at first order, only on averages and

correlations and not on higher order moments.

The validity of the ansatz (17) itself can be established a posteriori by checking that

the results obtained using the ansatz are consistent with it. In this section, we will link its

validity with the well-known van Kampen’s ansatz [1] that is the basis for the systematic

system-size expansion.

6



Van Kampen’s ansatz consists on assuming that the variable of interest has a deterministic

part of order Ω plus a stochastic part of order Ω1/2, i.e. n = Ωφ(t) + Ω1/2ξ, where Ω is a

parameter of the system that controls the relative size of the changes due to elementary

processes, typically the system size.

In our system the role of the parameter Ω is played by the total number of particles N .

As briefly stated in the main text, we cannot expect that the single-particle variables that

we are considering obey van Kampen’s ansatz, since they are not extensive. Our variables

si = 0, 1 have a deterministic and stochastic part that are both of order zero respect to N

(note that σ2[si] = 〈si〉(1 − 〈si〉)). However, the macroscopic variable n =
∑

si is indeed

extensive and we can expect that it will follow van Kampen’s ansatz: n = Nφ(t) + N1/2ξ.

This implies that the m-th central moment of n will scale as Nm/2, i.e:

〈(n − 〈n〉)m〉 =
∑

j1,...,jm

σj1,...,jm = O(Nm/2). (21)

Now, assuming that σj1,...,jm = fm(N)σ̃j1,...,jm for jk '= jl, with σ̃j1,...,jm independent of N

i.e. the m-particle correlations are all or the same order in N , so that
∑

j1 $=j2 $=,..., $=jm
σ̃j1,...,jm

scales as Nm (note that there are of the order of Nm terms in the sum), we obtain our main

ansatz, σj1,...,jm = O(N−m/2) for jk '= jl. We have only considered terms with jk '= jl in

the sum (21); terms with repeated sub-indexes can be expressed as lower order ones. For

example, if the index j1 is present k times, and the others are all different, we find:

σj1,j1,...,j1,j2,...jm−k+1
= 〈(sj1 − 〈sj1〉)

kδj2 . . . δjk−k+1
〉

= σj2,...jm−k+1
(−〈sj1〉)

k + 〈δj2 . . . δjm−k+1

k−1∑

i=0

(
k

i

)
(−〈sj1〉)

isj1〉 (22)

= σj2,...jm−k+1
[(1 − 〈sj1〉)

k〈sj1〉 + (1 − 〈sj1〉)(−〈sj1〉)
k] + σj1,...,jm−k+1

[(1 − 〈sj1〉)
k − (−〈sj1〉)

k]

as can be see expanding (sj1 −〈sj1〉)
k and keeping in mind that s2

i = si. The number of such

terms in the sum (21) is O(Nm−k+1), so they give smaller contribution that terms with all

sub-indexes different. Proceeding order by order from k = 1, we see that our main ansatz

(17) follows from (21).

We point out that in systems of heterogeneous particles we do not have a closed description

for the global, extensive, variable n so van Kampen’s expansion cannot be used. Instead we

derive the implications of van Kampen’s ansatz over the correlations of the microscopic vari-

ables. (17) is a simple and convenient expression that in general allows to close the equation
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for the moments (15,16). Often, however it is not necessary, and a weaker condition of the

form (21), that directly follows from van Kampen’s ansatz without further assumptions, is

sufficient.

Van Kampen’s ansatz is generally valid when the macroscopic equations have a single

attracting fixed point, when the system displays small fluctuations around the macroscopic

state. The general method explained here is expected to be valid under similar conditions.

An interesting topic for future research will be whether a system that has a single attracting

fixed point in the absence of diversity always maintains this globally stable state when

diversity is present, and whether a system that does not posses this globally stable fixed

point can acquire it when diversity is added.

D. Details of the calculation for the Kirman model

In the Kirman model with distributed influence, the averages and correlations obey:

d〈si〉

dt
= ε− (2ε+ λ)〈si〉 + N−1

∑

k

λk〈sk〉, (23)

dσi,j

dt
= −2(2ε+ λ)σi,j + N−1

∑

k

λk (σi,k + σj,k)

+ δi,j

[
ε+ a + (λ− 2a)〈si〉 − 2

∑

k

λkσi,k

N

]
(24)

with a ≡
∑

k
λk〈nk〉

N . Note that, due to the particular form of the rates, these equations are

indeed closed. The first equation leads to a steady state value 〈si〉st = 1
2 , which implies

〈n〉st = N
2 (a property that comes from the symmetry 0 ↔ 1). (24) is a linear system

of equations for the correlations. The steady state correlations can always be obtained by

inverting the matrix that gives the couplings. Obtaining a closed expression for σ2[n] in

terms of the moments of λ is, however, not straightforward. From (24), we see that in the

steady state:

σi,j =

∑
k λk

σi,k+σj,k

N + δi,j
[
ε+ λ/2 − 2

∑
k

λkσi,k

N

]

2(2ε+ λ)
, (25)

from where we obtain

σ2[n] =
∑

i,j

σi,j =
N(ε+ λ/2) + 2C(1 − 1/N)

2(2ε+ λ)
, (26)
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with C ≡
∑

i,j λjσi,j . Multiplying (25) by λj and summing over j, one obtains:

C =
d(1 − 2/N) + (ε+ λ/2)λN

4ε+ λ
, (27)

where d ≡
∑

i,j λiλjσi,j . This is obtained again multiplying (25) by λiλj and summing over

i, j:

d =
(ε+ λ/2)〈λ2〉N − 2e/N

4ε
, (28)

where e ≡
∑

i,j λ
2
iλjσi,j . Using the ansatz σi,j = O(N−1) we see that the last term of (28) is

O(N0) (while the other are of O(N)), so to the first order we obtain :

σ2
st[n] =

N

4

[
1 +

λ

2ε
+

σ2[λ]

2ε
(
4ε+ λ

)
]

+ O(N0), (29)

with σ2[λ] = λ2 − λ
2
. We have seen how the application of the ansatz (17) allows one to

obtain closed expression for the global average and variance. Interestingly, in this particular

example, it is possible to include all higher order terms to obtain an exact expression for d

(which gives the exact expression for σ2[n] trough (27,26)), details are given in the appendix:

d =
N(ε+ λ/2)

∑∞
k=0

(
−2

N(4ε+λ)

)k
λ2+k

4ε+ λ−
∑∞

k=0

(
−2

N(4ε+λ)

)k
λ1+k

=
N(ε+ λ/2) λ2

1+ 2λ

N(4ε+λ)

4ε+ 2λ2

N(4ε+λ)+2λ

(30)

The second equality holds as long as [2] limm→∞
λm+2

1+ 2λ

N(4ε+λ)

(
2

N(4ε+λ)

)m
= 0. A sufficient

condition for this is λi < (λ+4ε)N
2 , ∀i = 1, . . . , N . When the λi’s are i.i.d. random variables,

the probability that this condition is satisfied approaches one as N grows. This condition is

actually necessary and sufficient for the first equality in (30) to hold (see appendix).

We finally obtain the following exact expression for the variance:

σ2
st[n] =

N

4



1 +
2λ(1 − 1/N)

4ε+ λ
+ (N − 3 + 2/N)

λ2

N(4ε+λ)+2λ

2ε+ λ2

N(4ε+λ)+2λ



 (31)

We see from (31) that higher order corrections to σ2[n] depend on higher order moments

of the distribution of λ over the population.

Expressions (29, 31) refer to the variance of n in a population with given values for the pa-

rameters of each agent, λi, so the averages are population averages i.e. g(λ) =
∑N

i=1 g(λi)/N .
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In the case that the parameters of the agents are random variables, the population aver-

ages themselves, g(λ), become random variables. To compute the expected (average) value

of (29, 31), σ̂2[n], one has to average over the distribution of g(λ), which depends on the

distribution f(λ) of the λ′is (we are assuming λ′is i.i.d. random variables). This averages

were obtained numerically, by evaluating expressions (29, 31) over the same realizations

of the λi’s that were used in the numerical simulations. One can use the approximation

ĝ(λ) * ĝ(λ), that works better the larger the N and the lower the variance σ2
λ, and that,

due to the law of large numbers, is valid in the limit N → ∞. In Fig.2 of the main text we

compare the average of the analytical expression (31) with results coming from numerical

simulations. We find perfect agreement and see that at first order the dependence of σ2[n]

with σ2
λ ≡ λ̂2 − λ̂2 is linear and independent of the form of the distribution, as indicated by

(29). Higher order corrections are noticeable for higher levels of diversity.

In the case of heterogeneity in the preference of the agents for the states, as indicated in

the main text, the variance is given by:

σ2[n]st =
N

4(ε+ 2λ
N )

[
ε+(1 +

λ

ε
) −

ε+
2

ε

(
λ

2ε
+ 1

)
− 2

σ2[ε]

2ε+ λ

]
, (32)

In this case, the average of (32) over the distribution of parameters can be easily computed,

giving:

σ̂2[n]st =
N

4(ε+ 2λ
N )

[
ε̂+

(
2 +

λ

ε

)
− ε̂+

2
(
λ

2ε2
+

1

ε

)

−σ2
ε+

(
2ε+ λ/N

ε(2ε+ λ)
+

λ

2ε2N

) ]
, (33)

The correlation function can be derived as follows (we exemplify the derivation in the

case of distributed influence, for other types of heterogeneity, the derivation is similar):

(23) is an equation for the conditional averages 〈si|{sl(t0)}〉 if we set {sl(t0)} as initial

conditions. It implies:

da

dt
= ελ− 2εa → a(t0 + t) =

λ

2
(1 − e−2εt) + a(t0)e

−2εt, (34)

with a ≡
∑

k λk〈sk|{sl(t0)}〉/N . Noticing that (23) is equal to d〈si〉
dt = ε− (2ε+λ)〈si〉+ a(t),
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we obtain:

〈si(t0 + t)|{sk(t0)}〉 =
1

2
(1 − e−(2ε+λ)t) +

a(t0) − λ/2

λ
e−2εt(1 − e−λt) + si(t0)e

−(2ε+λ)t. (35)

Using now Kst[n](t) = 〈〈n(t0+t)|n(t0)〉n(t0)〉st−〈n〉2st =
∑

i,j〈〈si(t0+t)|{sk(t0)}〉sj(t0)〉−
N2

4

(remember 〈n〉st = N/2), and after some straightforward algebra, we obtain:

Kst[n](t) = (σ2
st − C/λ)e−(2ε+λ)t + C/λe−2εt. (36)

From (25) we get C/λ = 2ε+λ
2λ(1−1/N)

(σ2
st − N/4) ≡ u, showing that (36) is equal to the

expression displayed in the main text.

E. Appendix

We start with equation (25):

σi,j =

∑
k λk

σi,k+σj,k

N + δi,j
[
ε+ λ/2 − 2

∑
k

λkσi,k

N

]

2(2ε+ λ)
. (37)

Using the rescaled variables σ̃i,j ≡ 4σi,j, λ̃k ≡ λk

2(2ε+λ)N
, and defining Sn :=

∑N
i,j=0 λ̃i

n
λ̃j σ̃i,j,

we obtain:

Sn+1 =
Nλ̃− 1

2
Sn +

N

2

(
λ̃nS1 + λ̃n+1

)
. (38)

Defining now Gn :=
(

2

Nλ̃−1

)n

Sn, TM :=
∑M

n=1 Gn, we arrive to:

Gn+1 = Gn +

(
2

Nλ̃− 1

)n+1
N

2

[
G1

(
−
λ+ 4ε

4(2ε+ λ)

)
λ̃n + λ̃n+1

]
, (39)

TM+1 − G1 = TM +
N

2

M∑

n=1

[(
2

Nλ̃− 1

)n (
2λ̃n+1

Nλ̃− 1
+ G1λ̃n

)]

. (40)

If limM→∞ GM = 0, we see that:

G1 = −

N
2

∑∞
n=1

(
2

Nλ̃−1

)n+1
λ̃n+1

1 + N
2

∑∞
n=1

(
2

Nλ̃−1

)n
λ̃n

. (41)

Going back to the original variables, we finally obtain, with the notation of the main text:

d =

N3(ε+λ/2)(4ε+λ)
4

∑∞
n=1

(
−2

(λ+4ε)N

)n
λn+1

1 + N
2

∑∞
n=1

(
−2

(λ+4ε)N

)n

λn
, (42)
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which can be rewritten in the form (30), completing the proof.

The condition of convergence is:

lim
M→∞

GM = lim
M→∞

N∑

i,j=1

(
−2λi

(λ+ 4ε)N

)M 2λj

(2ε+ λ)N
σi,j = 0. (43)

A necessary and sufficient condition for this is λi < (λ+4ε)N
2 , ∀i = 1, . . . N . When the

parameters λi are i.i.d. r. v. the probability of this typically approaches 1 as N grows.

[1] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, (North-Holland, Amster-

dam, 2004).

[2] Note that
M∑

k=0

a
k
λk+2 = λ2

M∑

k=0

a
k
λ

k = λ2 1 − ak+1λk+1

1 − aλ
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