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We present results of detailed simulated annealing studies on several models of bond-disordered
Ising ferromagnets in two dimensions, both with distribution of couplings extending down to zero
and with a cutoff greater than zero in the distribution. We find that in each of these cases the resid-
ual energy after cooling, AE(r), can be represented as a power law of the cooling rate r, i.e.,
AE(r)= Ar*. Results for the cooling-rate dependence of the magnetization, M (r), are also dis-

cussed.

In spin-glasses and other disordered magnetic systems,
the cooling-rate dependence of the residual energy, left
after cooling to zero temperature in a finite time, is the
subject of many recent studies.' Since the equilibrium
low-temperature behavior in these systems is quite often
inaccessible in experiments or in computer simulations,
the nonequilibrium dynamics as a function of cooling rate
invites a lot of attention.”? Also, the concept of simulated
annealing® and the need to find efficient numerical optim-
izaton schemes* seem to play a key role in the added in-
terest in the problems mentioned above. Starting at high
temperature T, and cooling slowly, significant improve-
ment over more conventional optimization techniques
was obtained for a variety of problems." %3¢

Grest et al.' have numerically studied the residual en-
ergy after cooling, E (r), of several Ising spin-glass mod-
els as a function of cooling rate r. They have found that
for the one-dimensional nearest-neighbor Gaussian and
two-dimensional models, the nearest-neighbor Gaussian
and +J models E(r)=E,+C,r*, while for the three-
dimensional +J model and the infinite-range model,
E(r)=E,+C,(Inr)” !, where C, and C, are constants
and E; is the (unknown) energy of the true ground state.
The authors interpreted that the logarithmic cooling-rate
dependence seen in some of the models considered above
arise from the fact that in these problems finding the
ground-state energy is nonpolynomial (NP) complete.’
On the other hand, an analytical study2 based on the as-
sumption that the relaxation in these systems is dominat-
ed by a distribution of classical two-level systems with
low-energy excitations, predicts that the generic small-r
behavior for frustrated systems is

AE(r)=(Inr)" ¢, (n

where AE(r)=E(r)—E,. This study is also extended to
the case of bond-disordered ferromagnets with a continu-
ous distribution of couplings (J;;) with the prediction
that if all the couplings are non-negative, but the distri-
bution extends down to zero, Eq. (1) still remains valid,
even though this unfrustrated system has a trivial fer-
romagnetic ground state. However, when the distribu-
tion of couplings is such that there is a minimum J;; >0,
AE (r) should vary as a power of r.

The power-law behavior seen by Grest et al.! in two-
dimensional spin-glass models seems to work only over a
factor of less than 3 in AE (r) with a small exponent and
could be consistent with the logarithmic law [Eq. (1)].
Also, in these systems the ground-state energy is not
known exactly and hence one needs an extra parameter
for the fitting procedure which makes it more difficult to
numerically extract the correct behavior. We believe that
the bond-disordered Ising ferromagnets would be better

systems to study, since for these systems one knows the
exact ground-state energy.

In this paper we present results of detailed simulated
annealing studies on several models of bond-disordered
Ising ferromagnets, both with distribution of couplings
extending down to zero and with a cutoff J;; >0 in the
distribution. We find that in each of these cases the resid-
ual energy AE (r) can be represented as a power law of r,
namely,

AE(r)=Ar™, (2)

where the exponent x is larger in the cutoff case.
The Hamiltonian of the system is given by

NN

and o;,==*1. The coupling constants J;; are given in
terms of a probability distribution function P(J;;) which
characterizes the model. In this paper we have con-
sidered three different forms for P(J;;): (A) a Gaussian
distribution with mean zero and variance unity folded
about zero (the mean value of J;; in this case is V'2/m),
(B) the same distribution as (A) displaced by an amount
0.5 so that the mean value of J;; is 0.5+V2/7, and (C) a
uniform distribution between O and 1. For each of these
distributions we have computed the cooling-rate depen-
dence of energy E(r) and magnetization M (r) by per-
forming a simulated annealing study. In all the cases we
consider a square lattice with periodic boundary condi-
tions and linear dimension L =200. In order to check
that our results are not subjected to finite-size effects, we
have performed in some cases test runs with L =100 and
L =400 with the same results for E (#). In fact, we found
that the final energy is a self-averaging quantity® and
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FIG. 1. (a) Log-log plot of the residual energy E (¢)— E, for distribution (A) of couplings plotted against the annealing time ¢ to

verify the form (2). The solid line is the best fit to the data. The slope of this line gives a value of 0.340(5) for the exponent x. In this
figure and in other figures the size of the symbol is greater than the error bars when the latter are not shown. (b) Same as (a) for distri-

bution of couplings (B). The exponent x here is 0.41(1).

0.38(1).

there is no advantage in computer time when using either
smaller systems (which could lead, on the other hand, to
finite-size effects) or larger systems (since a minimum
number of measurements is required in order to be able
to apply statistical methods). The initial starting temper-
ature T, has been chosen for each distribution such that
the relaxation time is small at that temperature and the
final energy after cooling does not depend on it. For dis-
tributions (A) and (C) we use T;=2.0 and for distribu-
tion (B), T;=3.0. We used a temperature decrement
AT =0.1 and we have checked that smaller values of this
quantity (with a constant cooling rate) do not affect the
final energy. Since the cooling rate is defined as r =AT /¢

(c) Same as (a) for distribution of couplings (C).

The exponent x here is

where ¢ is the annealing time (number of Monte Carlo
steps spent at every temperature) and AT is a constant
throughout our calculation, the results can be expressed
either as a function of the cooling rate r or the annealing
time ¢, with t =AT /r. Our results for E (¢) and M (¢) are
summarized in Table I. In this table and in the following
figures the energies for all the distributions have been
normalized in such a way that the energy of the ground
state is —2. This makes it easier to compare energy
values for the different distributions.

The cooling-rate dependence of the ground-state ener-
gy for distributions (A), (B), and (C) are presented in Figs.
1 and 2. For each of these distributions we show a log-

TABLE I. Values for the energy and magnetization for a 200X200 system after annealing through z Monte Carlo steps and

AT =0.1 for distributions (A
N configurations of Ji;.

), (B), and (C) of couplings. The statistical errors shown in parentheses are obtained after averaging over

Distr. (A) Distr. (B) Distr. (C)
t N —FE |M| N —E |M| N —FE | M|
5 250 1.865 79(26) 0.0426(21) 150 1.903 51(40) 0.0815(47) 50 1.865 50(70) 0.0569(63)
10 100 1.892 53(41) 0.0590(46) 100 1.928 13(51) 0.1137(85) 30 1.894 54(79) 0.0546(79)
20 100 1.91497(43) 0.0698(47) 100 1.946 58(52) 0.147(11) 30 1.918 88(70) 0.071(12)
50 50 1.937 06(44) 0.0891(93) 50 1.962 03(69) 0.170(20) 20 1.9405(11) 0.108(19)
100 50 1.94991(59) 0.107(11) 50 1.97253(72) 0.269(29) 20 1.9552(10) 0.141(29)
200 50 1.959 99(48) 0.143(16) 50 1.98020(73) 0.388(37) 20 1.964 5(13) 0.166(39)
500 25 1.972 16(57) 0.206(28) 25 1.9849(10) 0.456(70) 15 1.977 4(14) 0.326(63)
1000 25 1.97791(67) 0.237(31)
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FIG. 2. (a) Plot of the logarithm of the residual energy E (1) — E, vs the double logarithm of annealing time 7 for distribution (A) of
couplings. The form (1) predicts that this plot should be a straight line with slope —&. The attempted fit of the last four points yields
£=2. (b) Same as (a) for distribution of couplings (B). In this case also the attempted fit of the last few points to form (1) yields E=2
although there is no theoretical basis for form (1) to hold in this case. (c) Same as (a) for distribution of couplings (C). The exponent
§ here again is =2.

log plot of AE(¢) versus ¢ in Figs. 1(a), 1(b), and 1(c), re- distribution (B), and x =0.38(1) for distribution (C). It is
spectively, to compare with functional form (2). It seems interesting to note that the exponent x is larger in distri-
clear from these figures that a power law is a good bution (B) when compared to the exponent in distribution
description of the data in every case over the whole range (A) and that they are both larger than the exponent found
of t values considered here. The exponent x of Eq. (2) has for the spin-glass model in two dimensions with a full
been calculated by a least squares fit to the data and is Gaussian distribution of couplings.! Although these re-
given by x =0.340(5) for distribution (A), x =0.41(1) for sults support functional form (2), we plot InAE (¢) versus
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FIG. 3. Logarithm of the magnetization, |M (1) for distribution (A) of couplings and a 200 X 200 system plotted against the loga-
rithm of annealing time 7. The solid line is the best fit to the data. The slope of this line gives a value of 0.32(3) for the exponent x.
This exponent is equal within error to the one obtained in Fig. 1(a) for the residual energy. (b) Logarithm of the residual magnetiza-
tion, 1—|M ()| for distribution (A) of couplings and a 200 X 200 system plotted against the power of annealing time 1%, which is
the same power obtained in Fig. 1(a) for the residual energy. The solid line is the best fit to the data.
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In (Int) for each of the distributions in Figs. 2(a), 2(b), and
2(c) to explicitly check functional form (1). We note that
the last few points of Figs. 2(a) and 2(c) are somewhat
consistent with functional form (1) with an exponent {~2
which is close to the upper bound on § found in Ref. (2)
for several frustrated systems. However, this seems to be
also true for Fig. 2(b) where functional form (1) is not
supposed to hold. Although this could be an indication
that we are not yet in the asymptotic regime where Eq.
(1) should hold, our data for AE (t) covers almost a factor
of 7 and extrapolates smoothly to zero in the infinite-
annealing-time limit when fitted to form (2).

We now present the results for the cooling-rate depen-
dence of the residual magnetization. We have found that
the magnetization per spin M (r) is system size dependent
and actually goes as 1/L, where L is the linear dimension
of the system. One can understand that by a simple
domain argument;’ if domains of linear size R (r) are left
when T goes to zero, the total magnetization per domain
is approximately R ?, and the number of domains is of the
order (L /R)*. Then the final magnetization per spin is of

the order of R /L. One also finds from a similar argu-
ment that AE(r)=1/R in that case. Then one expects
that |[M|=1/AE and consequently exhibits a power-law
behavior as shown in Fig. 3(a). However, this relation
should break down when AE goes to zero since |M]| is
bounded from above by unity. We have found that an
empirical fit such as a stretched exponential |M(r)]
=1—e " " fits the data for |M| over the whole range of
annealing time as shown in Fig. 3(b). This empirical fit
reduces to the power-law behavior when |M]| is small and
has also the correct limit when ¢ -— oo. Similar behavior
is seen for distributions (B) and (C).
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