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IFISC (Instituto de F́ısica Interdisciplinar y Sistemas Complejos),
CSIC–Universitat de les Illes Balears, Campus UIB, 07122, Palma de Mallorca,
Spain
E-mail: niko@ifisc.uib-csic.es, lucas@ifisc.uib-csic.es and raul@ifisc.uib-csic.es

Received 27 September 2010
Accepted 6 November 2010
Published 1 December 2010

Online at stacks.iop.org/JSTAT/2010/P12008
doi:10.1088/1742-5468/2010/12/P12008

Abstract. We address a mean-field zero-temperature Ginzburg–Landau, or φ4,
model subjected to quenched additive noise, which has been used recently as a
framework for analyzing collective effects induced by diversity. We first make use
of a self-consistent theory to calculate the phase diagram of the system, predicting
the onset of an order–disorder critical transition at a critical value σc of the
quenched noise intensity σ, with critical exponents that follow the Landau theory
of thermal phase transitions. We subsequently perform a numerical integration
of the system’s dynamical variables in order to compare the analytical results
(valid in the thermodynamic limit and associated with the ground state of the
global Lyapunov potential) with the stationary state of the (finite-size) system.
In the region of the parameter space where metastability is absent (and therefore
the stationary state coincides with the ground state of the Lyapunov potential),
a finite-size scaling analysis of the order parameter fluctuations suggests that the
magnetic susceptibility diverges quadratically in the vicinity of the transition,
which constitutes a violation of the fluctuation–dissipation relation. We derive
an effective Hamiltonian and accordingly argue that its functional form does
not allow one to straightforwardly relate the order parameter fluctuations to the
linear response of the system, at odds with equilibrium theory. In the region
of the parameter space (a > 1, a being a parameter of the Lyapunov potential)
where the system is susceptible to having a large number of metastable states
(and therefore the stationary state does not necessarily correspond to the ground
state of the global Lyapunov potential), we numerically find a phase diagram that
strongly depends on the initial conditions of the dynamical variables. Specifically,
for symmetrically distributed initial conditions, the system shows a disorder–
order transition for σ′

c < σc, yielding a reentrant transition in the full picture.
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The location of σ′
c increases with the parameter a and eventually coalesces with

σc, yielding in this case the disappearance of both transitions. On the other hand,
for positive-definite initial conditions the order–disorder transition is eventually
smoothed for large values of a, and accordingly no critical behavior is found. At
this point we conclude that structural diversity can induce both the creation and
annihilation of order in a nontrivial way.

Keywords: classical phase transitions (theory), critical exponents and
amplitudes (theory), finite-size scaling, phase diagrams (theory)
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1. Introduction

In statistical mechanics, models describing the effect of impurities or heterogeneities in
the behavior of magnetic systems are gathered under the label of spin glasses [1] when the
source of heterogeneity affects the local spin interaction (and therefore the interaction term
in the Hamiltonian takes into account such disorder). Conversely, the so-called random
field models [1] address those systems where the source of heterogeneity only yields an
additive heterogeneous term (perturbation) in the Hamiltonian: in this case the effect
of disorder is akin to subjecting the system to a random external perturbation. In both
cases, such sources of heterogeneity typically have slower dynamical evolution than the
spins (or the dynamical variables), and therefore these sources of randomness are said to
be quenched. In recent decades a wealth of literature has addressed the phenomenology
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behind spin glasses and random field models, including phase diagrams, aging and other
dynamical behavior, and comparison with their equilibrium counterparts (see [1]–[3] and
references therein).

In other branches of science the role of disorder in models characterizing the dynamical
behavior of multicomponent systems has also been addressed in recent years. Notable
examples include the effect that a certain amount of heterogeneity in the natural
frequencies of Kuramoto oscillators can yield on synchronization [4, 5], the paradoxical
constructive role that disorder can induce in the formation of ordered structures in a
plethora of different contexts [6]–[17], and the effect that the topology of the underlying
network of interactions plays in several types of dynamics [18]–[21], to cite but a few. All
these works address similar generic questions, namely studying the effect of structural
disorder on the dynamics of multicomponent systems.

In this paper we will address a paradigmatic example within equilibrium statistical
mechanics, the Ginzburg–Landau, also called φ4, model [22], in a version subjected to such
quenched disorder, much in the vein of random field models. Although the expected role
of heterogeneity is that of destroying the ordered state, recent works [7, 9] have addressed
the positive role of the quenched noise in enhancing the response of this model in the
presence of external periodic driving. In [6], the authors studied the effects of introducing a
quenched multiplicative dichotomous noise, and found that the phase diagram is modified
and gives rise to the onset of reentrant phase transitions not present in the quenched noise
free model.

Here we address the mean-field version of the model subjected to quenched additive
noise in the absence of temperature [9, 23]. First, we present an analytical study of
the phase diagram by means of a self-consistent theory, both in the non-metastable and
metastable regions. The theory predicts an order–disorder transition as a function of the
quenched noise intensity σ, with mean-field critical exponents equal to those of its thermal
equilibrium counterpart. We also perform a detailed numerical study of the system for
different sizes N in terms of finite-size scaling theory and determine the scaling exponents.
We show that in the non-metastable region the order parameter fluctuations diverge with
an exponent different from that of the magnetic susceptibility. This indicates a violation
of the fluctuation–dissipation relation. In order to justify this finding, we obtain in closed
form an expression for the probability density function of the system in terms of an
effective Hamiltonian Heff(x), and accordingly argue that the fluctuations of the order
parameter cannot be straightforwardly related to the linear response of the system. In
the metastable region, the results from numerical simulations deviate from the phase
diagram found through the self-consistent theory and show a strong dependence on the
specific initial conditions. Concretely, we show that for symmetrical initial conditions, the
simulations point to the presence of a reentrant phase transition (disorder–order–disorder)
with an ordered state whose width varies, and eventually disappears in the Ising limit,
corresponding to a large value of a parameter in the Hamiltonian. This counterintuitive
phenomenology supports the fact that disorder or heterogeneity cannot only induce
dynamical disorder but, on the contrary, can have an ordering role. Conversely, for
positive-definite initial conditions the phase transition is smoothed in the same limit,
and no critical behavior is found in that case.

The rest of the paper is organized as follows: in section 2 we present the model.
In section 3 we outline some considerations regarding the presence of metastable states.
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In section 4 we derive the mean-field critical exponents associated with the magnetization
and magnetic susceptibility. In section 5 we numerically study the order–disorder
transition in the range of parameters where the system lacks metastable states. We
provide compelling evidence suggesting that the fluctuation–dissipation relation is not
satisfied, and we argue that a possible reason is that the influence of the average external
field h on the effective Hamiltonian yielding the probability density function of the system
cannot be readily stated as Heff(x) = H0(x) + Nmh, m being the magnetization, as is
the case in equilibrium theory. In section 6 we numerically explore the system behavior
in the presence of metastable states and discuss the role of the initial conditions in the
asymptotic stationary state of the system. We also point out the presence of an disorder–
order transition induced by diversity in the metastable regime. In section 7 we summarize
our main results.

2. Additive Ginzburg–Landau model: preliminary considerations

We consider a set of N real dynamical variables xi(t), i = 1, . . . , N whose evolution is
given by a relaxational gradient flow [24] in a potential V :

dxi

dt
= −∂V (x; η)

∂xi
,

V =
N∑

i=1

[
−a

2
x2

i +
1

4
x4

i +
1

4N

N∑

j=1

(xj − xi)
2 − ηixi

]
,

(1)

or

dxi

dt
= axi − x3

i +
1

N

N∑

j=1

(xj − xi) + ηi. (2)

The Lyapunov potential V (x; η) depends, apart from the dynamical variables x ≡
(x1, . . . , xN), on a set of variables η ≡ (η1, . . . , ηN). Most commonly these variables
represent white noise of amplitude proportional to the temperature and the model
defines a class of thermal phase transitions. In this work, however, we take these
variables to represent quenched noise and the problem then belongs to a class of zero-
temperature random field models. Accordingly, (η1, . . . , ηN) are independently drawn
from a probability distribution g(η) (which typically will be a Gaussian) of mean h and
standard deviation σ. The model can be thought as describing a set of globally coupled
heterogeneous units, σ being a measure of the amount of diversity or heterogeneity in the
system. As we are interested in this work in the effect of the diversity, σ will be taken as
a control parameter and we will study the effect that σ has on the collective properties of
the system.

This model is indeed a discretization of a mean-field version of the well-known
Ginzburg–Landau Hamiltonian for a scalar field x(%r) in the presence of a random external
field η(%r) [1, 22]:

H =

∫
d%r

(
−a

2
x2 +

C

2
|%∇x|2 +

u

4
x4 − ηx

)
, (3)

where, without loss of generality, we have rescaled variables and time such that u =
1, C = 1/2. This Hamiltonian provides a coarse-grained description of critical phenomena,
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and its formulation is based on some phenomenological considerations such as locality
and symmetries (rotational and translational); that is to say, this latter expression is
not calculated from the microscopic physics, but rather can be understood as a coarse-
grained description of the magnetization field x. By using the Boltzmann weight factor
e−H/T , where T is the temperature, this model has been used for instance to describe
the paramagnetic–ferromagnetic transition (where the Hamiltonian describes the coarse-
grained magnetization field). In the case of a uniform external field, Landau theory
elegantly describes a second-order thermal phase transition for this system, with mean-
field critical exponents β = 1/2, γ = 1 [1, 22]. This Hamiltonian also offers a soft-spin
description of the Ising model [1]: as a matter of fact, in the limit a → ∞ one recovers
the Ising model (or the random field Ising model (RFIM) in the case of having a random
external field). In recent decades the RFIM has been extensively studied (see [1, 25] and
references therein), where some specific results include the onset of criticality in terms of a
second-order phase transition at zero temperature induced by the disorder of the random
field, with mean-field critical exponents [26, 27] as in the thermal counterpart [28]. Several
other features, such as hysteresis, avalanche dynamics, or return point memory effects, to
cite a few, have been studied within the RFIM, both in analytical (renormalization group)
and numerical (finite-size scaling) terms [25, 29]. The properties of the model have also
been studied in the context of domain growth dynamics, both in the Ising limit [30]–[32]
and using the full Ginzburg–Landau Hamiltonian [33].

3. On the presence of metastability

From the dynamical point of view, it has already been said that the evolution is
relaxational in the Lyapunov potential V . Hence, the absolute minimum (or ground
state) of V located at x̄ ≡ (x̄1, . . . , x̄N ) must be considered as the global attractor of the
dynamics. It is obvious that the value of x̄ will depend on the specific realization of the
quenched noise variables (η1, . . . , ηN). On the other hand, the solutions of the differential
equations (2) tend to values xst

i = limt→∞ xi(t), which might or might not coincide with
x̄i. If the potential V has a single minimum, then the dynamics always leads to x̄, but if
there are additional, metastable, minima, then the asymptotic solution xst depends on the
initial condition x(t = 0), as it might get stuck in one of them. The presence and relevance
of these metastable minima depends in general (and besides the particular realization of
the quenched noise variables) on the value of the parameter a and the number of variables
N .

In order to find the absolute minimum x̄ one needs to solve the system of N coupled
algebraic equations:

0 = ax̄i − x̄3
i +

1

N

N∑

j=1

(x̄j − x̄i) + ηi. (4)

The solution is greatly simplified if one introduces the magnetization m as

m =
1

N

N∑

i=1

x̄i, (5)
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Figure 1. Lyapunov potential V (x1, x2) as defined in equation (1) for N = 2,
η1 = −0.48, η2 = 0.5 in the cases a = −1 (left), a = 0.8 (center) and a = 2.8
(right). While the case a = −1 displays a single minimum, in the case a = 0.8
there are 3 minima (2 metastable) and 2 maxima, whereas for a = 2.8 there are
4 minima (3 metastable) and 5 maxima.

and then writes equation (4) as:

m + ηi = (1 − a)x̄i + x̄3
i . (6)

This equation allows one to find x̄i as a function of m and ηi (in fact as a function of
m + ηi). The explicit solution, x̄i = x̄(m + ηi), can be replaced in the definition of the
magnetization to obtain a self-consistency equation:

m =
1

N

N∑

i=1

x̄(m + ηi). (7)

The problem has been reduced from the simultaneous solution of the N coupled
equations (4) to the solution of a single one (7). A similar methodology was for
instance in [34], where the authors made use of local mean fields in their study of the
hysteretic properties of the field-driven and magnetization-driven RFIM. In general, all
possible solutions m(1), m(2), . . . of equation (7) have to be obtained numerically. For a

given solution m(n) one can then find the respective values of x̄(n)
i using the function

x̄(n)
i = x̄(m(n) + ηi). In order to analyze the structure of the possible solutions of

equation (7), it is convenient to split the discussion into the cases a ≤ 1 and a > 1.

3.1. Case a ≤ 1

This is the simplest case. A graphical analysis shows that equation (6) has a unique real
solution x̄i = x̄(m + ηi) (see appendix). Even in this case, it is possible that equation (7)
has more that one solution for m. This is typically the case for small values of N . See
the example in figure 1.

However, as N increases the number of metastable solutions decreases rapidly. In
fact, it is possible to prove that in the thermodynamic limit, N → ∞, equation (7) can
have only either one or three solutions depending on the values of a, h, σ. The proof
replaces the sum over N by an integral over the probability distribution of the quenched
noise variables:

m =

∫
dη g(η)x̄(m + η). (8)

doi:10.1088/1742-5468/2010/12/P12008 6
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Let us assume that the probability distribution g(η) has a generic form g(η) =
(1/σ)G(η − h/σ). Henceforth, all numerical results will use the Gaussian distribution
G(z) = (1/

√
2π)e−z2/2. A change of variables leads to:

m =

∫
dξ G(ξ)x̄(m + h + σξ) ≡ Fσ(m + h). (9)

As Fσ(z) is a monotonously increasing function satisfying Fσ(0) = 0 and with a sigmoidal
shape1, there will be only one solution for m for all values of h if the derivative satisfies
F ′

σ(0) ≤ 1. On the other hand, for F ′
σ(0) > 1 there will be either one or three solutions

depending on the value of h. This analysis mimics that of the Weiss mean-field theory [37]
and allows one to compute the magnetization m(h; a, σ) as a function of the mean value of
the disorder h and the parameters a and σ. It displays the usual critical phenomena and
hysteresis. The critical point is defined by the condition F ′

σ(0) = 1 and can be achieved
by varying a or σ. It is possible to show that F ′

σ=0(0) = 1/(1 − a) and, since F ′
σ(0) is a

decreasing function of σ, the condition F ′
σ(0) = 1 can never be achieved for a < 0. This was

a priori obvious, since in that case the Lyapunov potential in the absence of quenched noise
has the global minimum at xi = 0, ∀i, already a disordered state. Some numerical values
(for the Gaussian distribution) for the location of the critical diversity σc as a function
of a are: (a = 0.1, σc = 0.196 16), (a = 0.5, σc = 0.500 41), (a = 2/3, σc = 0.595 233).
In the case a = 1, the Cardano formula simplifies to x̄ = (m + h)1/3, and it is possible
to perform analytically the integrals (again for a Gaussian distribution for the quenched
noise variables) with the result [9] (a = 1, σc = [Γ(1/6)/(21/33π1/2)]3/2 = 0.757 3428 . . .).

3.2. Case a > 1

The problem in this case is that the cubic equation (6) can have either one or three
real solutions, depending on whether the discriminant ∆i = 27(m + ηi)2 + 4(1 − a)3 is,
respectively, positive or negative. Furthermore, as before, several values of m can satisfy
the self-consistency equation (7). When there are three solutions for x̄i, (∆i < 0, this
requires a > 1) it is not clear a priori which one to chose in order to substitute in the
self-consistency relation (7). A possibility is to compute the Lyapunov potential V for
each of the possible solutions. However, since the maximum number of solutions can be as
large as 3N , this is not possible to carry out in practice for large N . The answer emerges
when one realizes that the dynamical equation for xi(t) can be written also as relaxational
in a local potential vi(xi, m):

dxi

dt
= −∂vi(xi, m)

∂xi
,

vi =
1 − a

2
x2

i +
1

4
x4

i − (m + ηi)xi +
m2

2
.

(10)

The solutions x̄(m + ηi) are nothing other than the extrema of this local potential. Now
we notice that the Lyapunov potential can be written as the sum of the local potentials:

V (x1, . . . , xN ) =
N∑

i=1

vi(xi, m). (11)

1 This assertion is certainly true for a Gaussian distribution g(η) as well as for other probability distributions,
although we have not been able to give a general proof of its validity.

doi:10.1088/1742-5468/2010/12/P12008 7
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Therefore, the absolute minimum of V is achieved by choosing in each case the solution
x̄(m+ηi) that minimizes the local potential vi(xi, m). Explicit expressions for the function
x̄ are obtained using Cardano’s formula and are given in the appendix.

The process to find the absolute minimum x̄ of the Lyapunov potential proceeds, as
before, by first finding m after solving numerically the self-consistency equation (7), but
using the correct function x̄(m + η). Similarly, the integral equation (8) can be used to
find the magnetization m(h; a, σ) in the thermodynamic limit. The phenomenology of the
solutions is similar to what was found in the case a ≤ 1 and will not be repeated here.

An important difference, however, from the case a ≤ 1 is that now the Lyapunov
potential displays a large number of metastable minima for all values of N and,
consequently, also in the thermodynamic limit (a recent study for the metastable states
of the zero-temperature RFIM has been carried out in [35, 36]). Therefore, starting from
arbitrary initial conditions, the asymptotic solution of the evolution equations xst

i will in
general differ from the values x̄i of the absolute minimum. It will be shown that new
phase transitions occur when one looks at the magnetization values that derive from the
stationary solution.

4. Critical behavior

We have seen that this mean-field model displays a second-order phase transition between
an ordered state (|m| > 0) and a disordered state (m = 0) at a critical value of
the diversity σc. In order to derive the critical exponents of such a transition, we
consider the self-consistency equation (9) and expand Fσ(m + h) in a Taylor series.
Since x̄(−m − h) = −x̄(m + h) (see appendix) and assuming that the distribution of
noises is symmetric with respect to the mean value, G(−ξ) = G(ξ), the function Fσ is
antisymmetric Fσ(−m − h) = −Fσ(m + h) and we get:

m = a1(σ)(m + h) + a3(σ)(m + h)3 + · · · (12)

with ak(σ) = F (k)
σ (0)/k!. Hence, the magnetization at h = 0 is:

|m| =






0 for σ > σc,√
1 − a1(σ)

a3(σ)
for σ < σc.

(13)

As F ′
σ(0) − 1 changes sign at σ = σc, we can expand a1(σ) = 1 + α1(σc − σ) + · · ·.

Accordingly, close to the transition the spontaneous magnetization behaves as |m| ∼
(σc − σ)β , with a critical exponent β = 1/2, as in Landau’s treatment of the thermal
phase transition.

To compute the critical behavior of the susceptibility χh ≡ (∂m/∂h)|h=0, we
take the derivative of both sides of equation (12) and set h = 0. This leads to
χh = (a1(σ) + 3a3(σ)m2/1 − a1(σ) − 3a3(σ)m2). Replacing equation (13) and a1(σ) =
1 + α1(σc − σ) + · · · we find the critical behavior:

χh = A±|σ − σc|−1 (14)

with critical amplitudes A− = 1/(2α1) for σ < σc and A+ = 1/α1 for σ > σc. Therefore
the susceptibility critical exponent is γ = 1, the same, unsurprisingly, as in Landau’s
theory.

doi:10.1088/1742-5468/2010/12/P12008 8
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5. Numerical results for a ≤ 1: violation of the fluctuation–dissipation relation

In this section we present the results coming from the numerical calculations in the
case a ≤ 1. The objective is twofold. First, by comparison with the analytical results
valid in the thermodynamic limit, we want to check the importance of the metastable
states that appear for finite N . To this end we performed numerical integrations of
equations (2) with a fourth-order Runge–Kutta method and a time-step of δt = 0.05. In
the absence of metastability the time-step is of lesser importance, as all we want is to
reach the unique stationary state. The stationary state was reached by checking that the
magnetization remains constant up to a precision ε = 10−6. The initial condition x(t = 0)
was a uniform random distribution in the interval [−2.5, 2.5]. Second, we will use the
theory of finite-size scaling in order to determine the exponents of the transition. For a
set of randomly chosen values of ηi s we calculated the stationary point by applying a
combination of the bisection method and the Newton–Raphson method to equation (7)
to find the corresponding solution with an accuracy of ε = 10−8. With ten thousand
repetitions for different realizations of the random values good statistics were achieved.
We will show that there is a violation of the fluctuation–dissipation relation in the sense
that the magnetic susceptibility cannot be computed as the ensemble fluctuations of the
magnetization. By ensemble average 〈〈· · ·〉〉 we mean an average with respect to realizations
of the random quenched noise variables as well as with respect to the initial conditions
x(t = 0). However, for the range of values of system size N employed in the simulations,
N ≥ 103, there was hardly any dependence on the initial condition for a given realization
of the random variables. This shows that metastable states either do not exist or it is
rare to get trapped in them for this range of values of a and N . In the left panel of
figure 2 we plot the order parameter m0 as a function of the diversity σ for the value
a = 2/3. As usual [38], the order parameter is defined as the ensemble average of the
absolute value of the magnetization m0 = 〈〈|m|〉〉 computed from the stationary values as
m = (1/N)

∑N
i=1 xst

i . As predicted by the self-consistent treatment explained in previous
sections, there is a phase transition from an ordered (ferromagnetic-like, m0 > 0) to
a disordered (paramagnetic-like, m0 = 0) phase as a function of σ. The transition is
smeared out by finite-size effects, but it approaches the solution of the thermodynamic
limit and the transition point σc as the system size N increases. In the right panel
of this figure we plot the normalized fluctuations of the order parameter, defined as
χ ≡ (N/σ2)[〈〈m2〉〉 − 〈〈|m|〉〉2], as a function of the diversity σ. These fluctuations have
a maximum in the neighborhood of σc and, as shown in the right panel of figure 3, they
increase with increasing N as χ(σc) ∼ N b, with b ≈ 2/3, for different values of the
parameter a, and hence diverge in the thermodynamic limit. As shown in the left panel
of the same figure, the order parameter at the critical point decreases as m0(σc) ∼ N−c,
with c ≈ 1/6, and tends to zero in the thermodynamic limit.

Data for a range of values around the critical region can be collapsed through standard
finite-size analysis [39, 40] according to the scaling laws: m0(σ, N) = N−cfm(Nv(1−σ/σc))
and χ(σ, N) = N bfχ(Nv(1−σ/σc)) with appropriate scaling functions fm and fχ. A good
fit, see figure 4, is obtained with v = 2c ≈ 1/3. Note that this scaling form implies that
in the infinite-size limit m0(σ) ∼ |σ− σc|β and χ(σ) ∼ |σ− σc|−γ, with critical exponents
β = c/v = 1/2 and γ = b/v = 2. We have also performed a finite-size scaling of the
fluctuations of the stationary value of the energy (global potential) at the critical disorder

doi:10.1088/1742-5468/2010/12/P12008 9
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Figure 2. Left panel: order parameter m0 as a function of the diversity σ for
a = 2/3. The symbols correspond to the numerical integration of the dynamical
equations (2) for different system sizes N and a Gaussian distribution (zero mean,
standard deviation σ) of the quenched noises. The solid line is the magnetization
m obtained by solving the self-consistency equation (9) for h = 0. Right panel:
order parameter fluctuations, χ, as a function of the diversity σ, for the same
system sizes as the left panel (the vertical axis is on a log scale for presentation
purposes).

Figure 3. Log–log plots of the order parameter m0 (left panel) and the
fluctuations χ (right panel) as a function of system size N for different values
of a, at the corresponding critical point σc(a). In all cases we find a good fit
to a power-law behavior: m0 ∼ N−c and χ ∼ N b with c = 0.16 ± 0.01 and
b = 0.66 ± 0.02. The error bars, included in both figures, are smaller than the
symbol size.
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Figure 4. Data collapse of the order parameter m0 (left panel) and
the fluctuations χ (right panel) according to the finite-size scaling relations
m0(σ,N) = N−v/2fm(Nv(1 − σ/σc)) and χ(σ,N) = N bfχ(Nv(1 − σ/σc)) using
v = 1/3, b = 2/3. The goodness of the collapse is evidence supporting the validity
of the scaling relations.

σc(a = 2/3) = 0.595 233, according to which one finds a value for the critical exponent of
those fluctuations α ≈ 0, the same as the (thermal) mean-field result for the specific heat
(data not shown).

While the result of section 4 proved that the susceptibility χh has a critical exponent
γ = 1, the numerical simulations suggest that the fluctuations χ diverge close to the
critical point as a power law with a different exponent, γ = 2. This seems to constitute
a violation of the fluctuation–dissipation relation. Since we have restricted this analysis
to the range a ≤ 1, this violation does not seem to be related to typical situations of
metastability, absence of time translation symmetry or aging [1]–[3]. Note also that in
the case a ≤ 1 we do not expect avalanche dynamics to be relevant, as the mean value h
of the quenched noise variables (equivalent to the magnetic field) is varied, since in this
case the solution of equation (6) is a continuous function, i.e. does not present jumps,
of m + ηi. The situation would be different for a . 1, the Ising limit. Furthermore, the
hyperscaling relation 2β + γ = dcν, which holds in the mean-field regime or for d ≥ dc, is
satisfied using γ = 2, as it is known [41] that the upper critical dimension is dc = 6 and
ν = 1/2.

To explain this discrepancy, we note that the fluctuation-dissipation relation is
obtained typically for a system in the canonical ensemble at temperature T and whose
probability density function (pdf) is fx = Z−1 exp(−H/T ), with a partition function
Z =

∫
dx exp(−H(x)/T ), H being the Hamiltonian of the system. If the Hamiltonian

contains a magnetic interaction H(x) = H0(x) + Nmh, one can prove the fluctuation–
dissipation relation between the magnetic susceptibility χh and the fluctuations of the
magnetization 〈m〉:

χh ≡ ∂〈m〉
∂h

∣∣∣
h=0

=
N

T

[
〈m2〉 − 〈m〉2

]
, (15)

where 〈· · ·〉 denotes an average with respect to the probability distribution fx(x).

doi:10.1088/1742-5468/2010/12/P12008 11
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In our case, there are two averages: with respect to initial conditions and with respect
to realizations of the random variables η. We have already argued that for a ≤ 1 and
large values of N , the results are largely independent of initial conditions, so all that
contributes to the ensemble average 〈〈· · ·〉〉 are the noise variables. As there is a one to
one correspondence between the stationary values x̄ and η we can write the pdf of x̄ in
terms of the pdf of η:

fx(x̄1, . . . , x̄N) = fη(η1, . . . , ηN) |J | . (16)

If we take the ηis to be independently distributed Gaussian variables, we have

fη(η1, . . . , ηN) =
N∏

i=1

[
1

σ
√

2π
exp(−(ηi − h)2/2σ2)

]
. (17)

As equation (6) implies

ηi = (1 − a)x̄i + x̄3
i −

1

N

N∑

j=1

x̄j , (18)

it is possible to compute the determinant of the Jacobian matrix Jij = (∂ηi/∂x̄j):

|J | =

(

1 − 1

N

N∑

j=1

1

3x̄2
j + 1 − a

)
N∏

i=1

[
3x̄2

i + 1 − a
]
. (19)

Replacing equations (17)–(19) in equation (16), one can write the pdf of x̄ as the
exponential of an effective Hamiltonian fx̄(x̄) = Z−1 exp(−Heff), with:

Heff(x̄) = − ln

(

1 − 1

N

N∑

j=1

1

3x̄2
i + 1 − a

)

+
N∑

i=1

[
[(1 − a)x̄i + x̄3

i − m − h]2

2σ2
− ln

(
3x̄2

i + 1 − a
)]

. (20)

However, as it cannot be split in the form Heff = H0 + Nhm, it is not possible (at least
in a trivial manner) to relate the susceptibility to the fluctuations of the order parameter.

6. Numerical results for a > 1: dependence on the initial conditions

In the case a > 1 the presence of metastable states is relevant, as the dynamics usually
gets trapped in one of them. Therefore, in general, the asymptotic values xst depend on
the initial conditions and the absolute minimum of the potential V might not be reached.
Accordingly, deviations from the self-consistent theory are expected to appear. In this
section we will study this case and show that a new phenomenology can appear depending
on the particular value of a and the distribution of the initial condition x(t = 0). For the
sake of concreteness, we have focused on two types of initial conditions: symmetrical and
positive-definite.

doi:10.1088/1742-5468/2010/12/P12008 12
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Figure 5. Numerical results of the average magnetization as a function of diversity
σ, for a system of N = 16384 coupled variables for different values of a ≥ 1
(for the numerical integration of equation (2), initial conditions are drawn from a
symmetrical uniform distribution U [−δ,+δ]). Note that depending on the specific
value of parameter a, three different behaviors take place: (i) an order–disorder
transition at σc for a = 1, 1.4, (ii) a reentrant phase transition formed by a
disorder–order transition at σ′

c coupled to an order–disorder transition at σc for
intermediate values of a = 1.8, and (iii) the absence of any transition to an
ordered state for the larger value a = 2.4.

6.1. Symmetrical initial conditions

The initial values xi(t = 0), i = 1, . . . , N , are independently drawn from a uniform
distribution in the interval [−δ, +δ], for a given value of δ. In figure 5 we plot the average
magnetization m0 = 〈〈|m|〉〉 as a function of diversity σ for different values of a and system
size N = 16 384 for δ = 2.5. The data have been averaged over 102 initial conditions for
x(t = 0) and then over 102 realizations of the quenched noise variables (104 averages in
total). At variance with the case a ≤ 1 (which is also shown in the figure for comparison)
we find three possible scenarios: (i) for a ! 1 (weak metastable regime, a = 1.4 in the
figure) one observes the same phenomenology as for a ≤ 1: an order–disorder transition
at a critical value σc(a). (ii) For larger values of a, the former transition is still present
at σc, but a new transition (from a disordered state m0 = 0 to an ordered one m0 > 0
as σ increases) is found at σ′

c < σc, see the curve corresponding to a = 1.8 in the figure.
In this case, we find the counterintuitive result that a certain level of diversity in the
quenched noise is needed to induce order at σ = σ′

c, whereas a large level of diversity
destroys the ordered state again (reentrant phase transition). (iii) Finally, for increasing
a, σ′

c increases and σc decreases, eventually coalescing for a > ac ≈ 2.4, where the ordered
state disappears. Thus, for large values of a, the system does not show any transition
and the stationary phase is always the disordered one. We point out that in the curve for
a = 2.4, the magnetization is not exactly zero for intermediate values of the diversity due
to a finite-size effect: m0 decreases and approaches zero for all values of σ as the system

doi:10.1088/1742-5468/2010/12/P12008 13
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Figure 6. Left panel: phase diagram of the system, where the symbols correspond
to the values of critical points σc (associated with the order–disorder transition)
and σ′

c (associated with the disorder–order transition) as a function of a, for
a system of N = 16384 (derived by numerically integrating equation (2) with
initial conditions drawn for a symmetrical uniform distribution [−δ,+δ]). In
the region a > 0 the system shows an order–disorder phase transition at σc,
the location of this transition increasing with a. The values of σc (in the
thermodynamic limit) can be derived from the self-consistent theory as those
satisfying F ′

σc
(0) = 1, and are represented by the solid line. In the region a > 1

the system presents metastable states even in the thermodynamic limit and the
solid line refers to the location of the phase transition derived from the analysis
of the ground state of the Lyapunov potential. At odds with the self-consistent
theory, we numerically find for intermediate values of a the coexistence of two
phase transitions (reentrant transition), where the location of both critical points
converge for increasing values of a until coalescence. At this point the ordered
state is completely destroyed for all values of σ. Right panel: same diagram as
for the right panel, when the numerical integration of equation (2) is performed
with initial conditions drawn for a uniform distribution in the positive-definite
interval [0, 2δ]. In this case, the phase transitions disappear for a ! 1.4, as in
this case the order parameter m0 tends to zero smoothly with σ, see right panel
of figure 8.

size increases, something that does not occur in cases (i) and (ii). All these features are
illustrated in the phase diagram plotted in the left panel of figure 6: (i) for 1 < a " 1.6
the usual order–disorder transition appears, although the value of σc is smaller that the
one derived from the analysis based upon the structure of the global attractor x̄. (ii) For
1.6 " a " 2.4 there is a new transition from a disordered to an ordered state at a value
σ′

c < σc. (iii) Finally, for a ! 2.4 the only phase encountered is the disordered one.

In order to characterize the transitions that occur in region (ii), we have run extensive
simulations for different system sizes in the case a = 1.8. The order parameter m0 is

doi:10.1088/1742-5468/2010/12/P12008 14
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Figure 7. Left panel: numerical results of the order parameter as a function
of σ for different system size and a = 1.8, where a reentrant phase transition
takes place (for the numerical integration of equation (2), initial conditions are
drawn from a symmetrical uniform distribution U [−δ,+δ]). Exact results from
the self-consistent theory are represented in the solid line. The deviations from
the theory are related to the fact that the system does not reach the ground state
of the Lyapunov potential, as it gets trapped in metastable states. Right panel:
fluctuations of the order parameter as a function of σ for the same system as the
left panel. Fluctuations have a maximum that scales with the system size close
to both transition points.

displayed in the left panel of figure 7. By looking at the difference to the magnetization
curve derived from the theoretical analysis, it is clear from this figure that the system is
not able to reach the absolute minimum either for small or large diversity σ. We observe,
at both transitions, the same qualitative dependence on system size that was discussed in
the case a ≤ 1. As we do not yet have a theoretical prediction for σ′

c or σc the numerical
analysis of the data is much less conclusive. Pseudo-critical points σc(N) and σ′

c(N) can
be defined as the location of the maximum of the fluctuations χ of the order parameter,
see the right panel of figure 7. The fluctuations scale roughly as χ(σ′

c(N)) ∼ N b′ and
χ(σc(N)) ∼ N b with b′ ≈ b ≈ 0.9. However, it is difficult to obtain reasonably good
quality fits of the data to the standard finite-size scaling relations used in the case a < 1.
Furthermore, the data show a dependence on δ (data not shown) such that σc and σ′

c

adopt different values for small δ but saturate for δ ! 2.5.

Summing up: if the initial conditions are distributed in a symmetrical interval, the
order region is much reduced with respect to the predictions based upon the structure of
the ground state. There is a region in parameter space where the system undergoes what
appear to be well-defined phase transitions, from disorder to order and back to disorder
at σ′

c and σc, respectively. The order–disorder transition (σc) is related to the one found
in the regime a < 1, while the disorder–order transition (at σ′

c < σc) is a new behavior
whose nature is genuinely metastable. For a ! 2.4 the system is never in the ordered
state.
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Figure 8. Numerical results of the order parameter as a function of σ, for
different system’s size N = 4096, 8192, 16 384, and values a = 1.2 (left panel) and
a = 1.8 (right panel). For the numerical integration of equation (2), the initial
conditions are drawn from a positive-definite uniform distribution U [0, 2δ], with
δ = 0.1, 0.5, 2.5, 3.0. The effect of the interval size saturates for approximately
δ ≥ 0.5 and 2.5 for the left and right panel respectively. While finite-size effects
in the magnetization are hardly observed for a = 1.2, fluctuations still increase
with a system size close to the transition. On the other hand, for a = 1.8 no
finite-size effects are observed, either for the magnetization or for its fluctuations:
the transition is smoothed and no critical behavior is observed.

6.2. Positive-definite initial conditions

The initial values xi(t = 0), i = 1, . . . , N , are independently drawn from a uniform
distribution in the interval [0, 2δ], for a given value of δ. Obviously, for symmetry reasons,
the same results would be obtained if the initial conditions were drawn from the interval
[−2δ, 0]. In figure 8 we plot the average magnetization m0 = 〈〈|m|〉〉 as a function of
diversity σ for different values of a = 1.2 (left panel) and a = 1.8 (right panel), for
different system sizes N and values of δ. These two values of a show slightly different
behaviors: for a = 1.2, while the sharpening finite-size effect of the magnetization is hardly
seen in the plot, the fluctuations still increase with system size close to the transition (data
not shown), which suggests the presence of a phase transition in the thermodynamic limit.
Note that the dependence on the width of the initial condition δ is very weak and results
are basically indistinguishable for δ ≥ 0.5. On the other hand, for a = 1.8 there is hardly
any dependence on the system size either for the magnetization or its fluctuations. The
magnetization m0 tends to zero smoothly with σ and the fluctuations do not increase
with system size (data not shown): the transition is smoothed and no critical behavior
is present. Again, there is a dependence on the value of δ for small δ, but the curves for
δ = 2.5 and 5.0 are indistinguishable from each other. Summing up, for positive-definite
initial conditions, the phase transition from order to disorder disappears at a value a ≈ 1.6
(the actual value depends of the width δ), such that the system shows always some degree

doi:10.1088/1742-5468/2010/12/P12008 16



J.S
tat.M

ech.
(2010)

P
12008

Critical behavior of a Ginzburg–Landau model with additive quenched noise

of order for a ! 1.6 (see the right panel of figure 6). In this sense, the ordered region is
enhanced with respect to the predictions based upon the structure of the ground state.

7. Conclusions

In this work we have studied the mean-field version of a Ginzburg–Landau, or φ4, model
with additive quenched noise at zero-temperature. The model, which has recently been
proposed in the framework of collective behavior induced by diversity [7, 9], is a field
version of the random field Ising model studied extensively in the literature. As a function
of diversity σ, a self-consistent theory predicts the presence of an order–disorder transition
at a critical value σc, with mean-field critical exponents that are equal to those of Landau’s
theory of thermal phase transitions. Numerical integration of the dynamical equations (2)
has also been performed for comparison. In the range of parameters where the system
lacks metastable states (a ≤ 1), finite-size scaling relations show that the order parameter
fluctuations diverge quadratically, rather than with γ = 1 as in thermal, equilibrium,
phase transitions. This suggests a violation of the fluctuation–dissipation relation which
is not associated to metastable effects such as lack of time translational invariance or
aging [1]–[3]. To explain this fact, we compute an effective Hamiltonian and argue that it
cannot be readily expressed as Heff = H0+Nhm: as a consequence, the fluctuations of the
order parameter cannot be straightforwardly related to the linear response, as is the case
in equilibrium theory. In the range of parameters where metastability is likely to appear
(a > 1), stationary values typically do not reach the minimum of the Lyapunov potential,
and accordingly numerical results deviate from the self-consistent theory, showing a strong
dependence on the initial conditions. For a symmetrical distributed initial condition in
the interval [−δ, +δ], the ordered region is much reduced with respect to the predictions
based upon the structure of the ground state of the potential. Furthermore, there is a
region of values of a for which a new transition from a disordered to an ordered state
takes place at σ′

c < σc. In this case, diversity can not only destroy an ordered state but
also induce order from a disordered metastable state. This new transition is genuinely
metastable, and its location increases for increasing values of a, until coalescing with σc,
where the ordered phase completely disappears. On the other hand, when the initial
condition is distributed in [0, 2δ], large enough values of a destroy the critical behavior
of the order–disorder transition and some degree of order remains at every value of the
diversity σ.

We conclude that structural diversity can induce both the creation and annihilation
of order in a nontrivial way, and deeply modify the dynamics of its diversity-free system
counterpart. On the other hand, the apparent violation of the fluctuation–dissipation
relation should be further investigated; at this point we can conclude that directly relating
the order parameter fluctuations to the linear response of a system can be tricky, even
in the absence of metastability. This is particularly relevant in problems involving the
estimation of critical exponents in nonequilibrium phase transitions.
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Appendix. Solutions of the cubic equation

We give explicit expressions for the function x̄(m + η) defined as the convenient real
solution of the cubic equation αx + x3 = z, where α = 1 − a and z = m + η.

In the case α ≥ 0 there is only one real solution to this equation, as given by Cardano’s
formula

x̄(z) = u − α/(3u), u =
3

√
z

2
+

√
z2

4
+

α3

27
. (A.1)

For α < 0, the same formula applies if the discriminant ∆ ≡ 27z2 + 4α3 is positive
∆ ≥ 0, i.e. z /∈ (−2(−α/3)3/2, +2(−α/3)3/2). Otherwise, out of the three real solutions,
the one that minimizes the local potential v(x) = (α/2)x2 +(1/4)x4−zx is obtained using
the trigonometric form of Cardano’s formula:

x̄(z) = 2 sgn(z)

√
−α

3
cos

(
1

3
arccos

√
−27z2

4α3

)

, (A.2)

where the arccos function takes values in the principal branch [0, π/2] thereof. Note that,
in every case, the function x̄ is antisymmetric x̄(z) = −x̄(−z).
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