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a b s t r a c t

Based on the order parameter expansion, we present an approximate method which allows us to reduce
large systems of coupled differential equations with diverse parameters to three equations: one for the
global,mean field, variable and twowhichdescribe the fluctuations around thismean value. Themethod is
based on a systematic perturbation expansion and can be applied around the vicinity of the homogeneous
state. With this tool we analyze phase transitions induced by microscopic disorder in three prototypical
models of phase transitions which have been studied previously in the presence of thermal noise. We
study howmacroscopic order is induced or destroyed by time-independent local disorder and analyze the
limits of the approximation by comparing the results with the numerical solutions of the self-consistency
equation which arises from the property of self-averaging. Finally, we carry on a finite-size analysis of the
numerical results and calculate the corresponding critical exponents.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The effect of time-dependent noise in extended dynamical
systems has been the subject of intensive study in the last years [1].
Besides the expected disordering role, it has been found that some
kind of order at the macroscopic level can appear by increasing
the intensity of the noise. Examples of this paradoxical result
include stochastic resonance [2,3], or enhancement of the effect
of an external forcing under the right amount of noise, coherence
resonance [4] (also named as stochastic coherence [5]) where a
dynamical system displays optimal periodicity at the right noise
value, noise sustained patterns, structures and fronts [6,7], phase
transitions where a more ordered phase appears when increasing
the noise intensity [8,9], etc.

In a very general framework, it has been argued that the reso-
nancewith an external forcing can also be achievedwhen the time-
dependent noise is replaced by a more general source of disorder.
This includes natural diversity or heterogeneity, competitive inter-
actions, disorder in the network of connectivities, etc. and can ap-
pear in driven bistable and excitable systems [10–12], in linear [13]
and chaotic [14] oscillators and in a variety of other systems
[15–23]. A unifying treatment of the role of noise and diversity for
non-forced excitable systems, has been developed in [11].

∗ Corresponding author. Tel.: +34 971 259520; fax: +34 971 173426.
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In this work we examine the effect that structural disorder or
diversity, in the form of quenched noise, has on some prototypical
models of phase transitions which have been studied thoroughly
in the presence of noise. From the practical point of view,
the models we will be considering bear some similarities with
random field, or impurities, models. As tool of investigation we
will refine a previously developed order parameter expansion
method of approximating large systems of coupled differential
equations [24–28] with diverse parameters. This allows the
reduction of the large set of differential equations to just three:
one for the global, mean field, value and two which describe the
fluctuations around this mean value. Within this approximation
(which is valid in the vicinity of the homogeneous state) we will
analyze three different models and show its ease to deliver some
understanding of the emergent properties of the global behavior.
To find the limits of the order parameter expansion method we
will compare the results with the solution of the self-consistency
equation which arises from the property of self-averaging.

The chosen models are a set of globally coupled φ4-systems
both in the presence of additive andmultiplicative quenched noise
and the canonicalmodel for noise-induced phase transition [8,9]. It
will be seen that quenched noise can induce phase transitions (in,
out and reentrant) of ordered phases.

The rest of the paper is organized as follows: In the next section
wewill describe the analyticalmethods, self-consistency and order
parameter expansion; in Section 3 we will apply those methods to
the showcase models and compare with the results of numerical
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simulations; the last section closes the paper with the discussion
of the presented results.

2. Models and method

The type of models we will be considering in this paper is
defined via differential equations for the dynamics of a set of real
variables xi:

ẋi = f (xi, ηi; X), i = 1, . . . ,N. (1)

The time derivative ẋi(t) = dxi(t)/dt depends on the constant
parameter ηi, a kind of quenched noise. The values {η1, . . . , ηN} are
independently drawn from a probability distribution g(η) of mean
H and variance σ 2. Coupling between the different dynamical
equations is provided by the presence of the global variable or
mean value X(t) = 〈xi(t)〉 ≡ 1

N

∑N
i=1 xi(t) in Eq. (1). For a given

realization of the ηi’s variables the xi’s tend in the limit t → ∞ to
some asymptotic, stationary values which, in general, will depend
on initial conditions. Some insight can be obtained if we write
Eq. (1) as a relaxational dynamics [29] in a potential V (xi, ηi; X) =
−

∫ xi dxi′f (xi′, ηi; X):

ẋi = −∂V (xi, ηi; X)

∂xi
. (2)

If the potential V (xi, ηi; X) is monostable for a particular value of
X , then the variable xi(t) tends during the dynamical evolution
towards the single minimum of V (xi, ηi; X). Note that the location
of this minimum will change with time as X evolves. If, on the
contrary, V (xi, ηi; X) presents several minima, the dynamics will
tend towards one of the local minima of the potential.

In the following we will be interested in characterizing the
stationary solution by the ensemble average value and fluctuations
with respect to realizations of the quenched noise and initial
conditions of the global variable X . We first review briefly the self-
consistency method and then explain the approximate method
based on the order parameter expansion.

2.1. Self-consistency

This method uses ideas borrowed from the Weiss molecular
field theory [30], which is known to be exact for systems with
long-range interaction or, equivalently, in which the interaction
occurs through the global variable X , a mean field scenario, as it
is our case. Let us denote the stable stationary solution of Eq. (1)
by x∗

i . This is nothing but the absolute minimum of the potential
V (xi, ηi; X). It will be a function of ηi and the global variable X ,
i.e. x∗

i = x∗(ηi, X). For a given realization of the quenched noise
variables ηi’s, the value of the global variable must be obtained
from the self-consistency relation X = 1

N

∑N
i=1 x

∗(ηi, X). It is clear
that for large N the sum can be replaced by an integral over the
distribution g(η) of the independent ηi’s variables:

X =
∫

dηg(η)x∗(η, X). (3)

It is then assumed that one can identify the value of X ,
obtained solving this equation, as the desired ensemble average,
i.e. assuming the property of self-averaging [31]. In general, the
possible solutions X of the self-consistency Eq. (3) have to be
found numerically. A possible scenario is that by changing some
parameter (e.g. the root mean square σ or the mean H) of the
distribution g(η), the solutions bifurcate and the system then
undergoes a phase transition between the possible solutions. We
will present the results of this procedure in the examples below,
but will not give any further details about the (in general, very
involved) numerical method used to solve Eq. (3).

2.2. Order parameter expansion

For the development of this approximatemethodwe assume, as
in the previous subsection, that the number of degrees of freedom
N is very large and then it is possible to substitute themean value of
the distribution g(η) by the system averageH = 〈ηi〉 = 1

N

∑N
i=1 ηi,

the variance by σ 2 = 〈(ηi − 〈ηi〉)2〉 = 1
N

∑N
i=1(ηi − 〈ηi〉)2, and

similar expressions for other cases.
Our goal is to find an approximate equation describing the

dynamics of themean value variable X . To this end, wewill expand
the evolution equations in the deviations εi(t) = xi(t) − X(t) of
the dynamical variables from themean value, and in the deviations
δi = ηi − H of the parameters from their mean value. The Taylor
expansion of Eq. (1) around the mean values up to second order
gives:
ẋi = f (X,H; X) + εi fx(X,H; X) + δi fη(X,H; X)

+ 1
2

ε2
i fxx(X,H; X) + εiδi fxη(X,H; X)

+ 1
2

δ2
i fηη(X,H; X) + · · · . (4)

With the usual notation fx(X,H; X) = ∂ f (x,η;X)
∂x

∣∣∣
x=X,η=H

, etc. We

now take averages and use that 〈εi〉 = 1
N

∑N
i=1 εi = 0 and 〈δi〉 =

1
N

∑N
i=1 δi = 0. Furthermore we have 〈δ2

i 〉 = σ 2 as the parameter
distribution’s variance. Sowhenwe average over Eq. (4) we are left
with:

Ẋ = f (X,H; X) + 1
2
fxx(X,H; X)〈ε2

i 〉 + fxη(X,H; X)〈εiδi〉

+ σ 2

2
fηη(X,H; X) + O(〈ε3

i 〉, 〈ε2
i δi〉, . . .). (5)

The evolution of X is then coupled to that of the second moment
of the snapshot probability density Ω = 〈ε2

i 〉 = 1
N

∑N
i=1 ε2

i and the
so-called shape parameter [27] W = 〈εiδi〉 = 1

N

∑N
i=1 εiδi. We will

now obtain evolution equations for these two variables. We follow
closely the method of [25] but keep all terms up to second order in
εi and δi. We start by subtracting (5) from (4) to obtain ε̇i = ẋi − Ẋ ,
which can then be replaced in Ω̇ = 〈2εiε̇i〉, Ẇ = 〈δiε̇i〉. After
some algebra, and neglecting terms of order O(〈ε3

i 〉, 〈ε2
i δi〉, . . .) or

higher, we get:

Ẋ = f (X,H; X) + Ω

2
fxx(X .H; X) + fxη(X,H; X)W

+ σ 2

2
fηη(X,H; X), (6a)

Ω̇ = 2Ω fx(X,H; X) + 2W fη(X,H; X), (6b)

Ẇ = W fx(X,H; X) + σ 2fη(X,H; X). (6c)
In summary, within this approximation we have obtained a closed
set of three differential equations (6a)–(6c). They have the feature
of being coupled only in one direction, i.e. W (t) is independent of
the others and Ω(t) depends only on W (t). These equations are
valid to study the global behavior in the general case, including
non-stationary collective states. Steady state conditions Ẇ = Ω̇ =
Ẋ = 0 lead to W = −σ 2 fη

fx
and Ω = σ 2 f 2η

f 2x
, and the equilibrium of

variable X is given by the solution of:

0 = f + σ 2

2

[

fηη + fxx
f 2η
f 2x

− 2
fxη fη
fx

]

, (7)

where we have simplified notation f = f (X,H; X), etc. As before,
an analysis of the bifurcations of this equation will allow us to find
the possible phase transitions of the model.
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Fig. 1. Bifurcation diagram of the Landau–Ginzburg model with additive quenched noise. Order parameter expansion (thick black lines) predicts a second order transition
for C > a (right: C = 10, a = 1) while bistability (first order phase transition) appears for C < 7a (left: C = 1.5, a = 1, the unstable solution is plotted as a dotted line). The
self-consistency solution (grey line) does not show bistability in any case. Symbols show the results of numerical simulations of the evolution equations averaged over 103

realizations of the quenched noise variables ηi and initial conditions. N = 103, 104, 105 (circles, squares, diamonds, respectively).

Our results, Eqs. (6), differ slightly from those in the cited
sources. In [24,26,27] the authors require the parameter to be
additive, thus setting fη = 1. In other works [25,28] any parameter
dependence is allowed, but a coherent regime is required, such that
terms of order O(〈ε2

i 〉) and higher are neglected.

3. Examples

After presenting the general development of the order param-
eter expansion method, we will now apply it to a few models of
relevance in the field of phase transitions. Our purpose is to com-
pare the results of our approximation with those coming from the
self-consistency equation analysis as well as with numerical simu-
lations of the different models. Solving the self-consistency equa-
tion requires in practice a complicatednumerical calculation,while
our treatment is simple and predicts the existence of phase transi-
tions with reasonable accuracy in some cases.

3.1. Globally coupled Landau–Ginzburg model with additive
quenched noise

The Landau–Ginzburg or φ4 scalar field has been studied
thoroughly from the analytical and numerical points of view,
as a paradigmatic model undergoing a second order phase
transition [32]. Here we are interested in this model in the case
that the stochastic thermal fluctuations have been replaced by
additive quenched noise, as an example of a random field scalar
model [33]. The dynamical equations for the set of real variables
xi, i = 1, . . . ,N , are:

ẋi = a xi − x3i + C (X − xi) + ηi. (8)

The study of themodel using the self-consistency relation equation
(3) can be found in [12]. Here we want to use the order parameter
expansion to derive themain properties of thismodel, in particular
the existence of a phase transition as a function of the intensity σ
of the fluctuations of the random fields ηi.

Following the steps from Section 2, we obtain the set of
equations for the order parameter X and the fluctuations W , Ω:

Ẋ = (a − 3Ω) X − X3 + H (9a)

Ω̇ = 2Ω
(
a − C − 3 X2) + 2W (9b)

Ẇ = W
(
a − C − 3 X2) + σ 2. (9c)

The steady state for the order parameter, Eq. (7), leads to:

0 =
(

a − 3
σ 2

(
3 X2 + C − a

)2

)

X − X3 + H. (10)

We now consider the case of zero average field H = 〈ηi〉 = 0.
In that case, Eq. (10) can have up to five real solutions. The trivial
solution X = 0, always exists and it is stable (if C > a) whenever
σ > σc , with

σc =






0 if a < 0,√
a
3
(C − a) if a > 0.

(11)

It turns out that for C > 7a > 0, the set of Eqs. (18b), (9a) and
(9c) contains two additional real stable fixed point solutions ±X0
for σ ≤ σc . At σ = σc it is X0 = 0 and hence σc identifies a second
order, continuous, phase transition (see right panel of Fig. 1). If
7a > C > a > 0 the range of existence and stability of these
two additional solutions extends up to σ ≤ σ0, where σ0 ≥ σc is
given by:

σ0 =
√

4
243

(2 a + C)3. (12)

Hence, in the range σ ∈ [σc, σ0] there is bistability between the
X = 0 and the±X0 solutions. Moreover, two additional symmetric
unstable solutions ±X1 appear in this range. Therefore, the point
σ0 signals the appearance of a first order, discontinuous, phase
transition (see Fig. 1, left). In that range, the three stable solutions
coexist with the two unstable solutions.

From a microscopic point of view, the phase transition from
the |X | > 0 to the X = 0 states can be explained as follows: for
σ = 0, it is ηi = 0, ∀i; all variables end up in the same stationary
value xi = √

a or xi = −√
a and the average value satisfies

|X | = √
a > 0. As the noise intensity increases, σ > 0, the average

value |X | tends to zero and the chances that individual values ηi
are smaller than −CX grow. This changes the minimum’s sign in
the (individual) potential. As a consequence the distribution of {xi}
becomes bimodal and the mean value approaches zero.

The existence of a phase transition from order to disorder
predicted by the order parameter expansion simple approximation
scheme is confirmed by the numerical solution of the self-
consistency equation (3) [12]. However, the transition appears to
be always second order, so indicating the validity of the prediction
of the approximate order parameter expansion in the limit of
large coupling. In fact, the critical value σc predicted by the
order–disorder transition, Eq. (11), deviates systematically from
the value coming from the numerical integration of the self-
consistency equation (3) for large coupling constant C , as shown in
Fig. 2, although the relative error between the two values decreases
as C increases.

We have also compared these predictions versus the results
coming from intensive numerical simulations. In the simulations
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Fig. 2. Critical intensity of the additive quenched noise for the Landau–Ginzburg
model versus coupling strength for a = 1. Prediction of order parameter
expansion (11) as continuous line, exact solution (3) as dotted line. The order
parameter expansion predicts a bistability region for C < 7a.

we have integrated the full set of Eq. (8) up to the steady state and,
then, we have computed the order parameter m = 〈〈|X |〉〉 and its
fluctuations χ = N

σ 2 [〈〈X2〉〉 − 〈〈|X |〉〉2]. Here X = 1
N

∑N
i=1 xi and

〈〈· · ·〉〉 denotes an ensemble average with respect to realizations
of the random variables ηi and initial conditions. The simulation
results for the order parameter are indicated by symbols in Fig. 1.
As usual, the transition from order to disorder is smeared out due
to finite-size effects but the numerical simulations do approach
the results of the self-consistency equation as the number N of
variables increases. We have analyzed our data using standard
finite-size scaling relations [34,35] and found that the dependence
of the order parameter on σ can be well fitted by m(σ ,N) =
N−b/2fm(εNb) with ε = 1 − σ/σc , b ≈ 0.33 and being
fm a scaling function. See evidence in the left panels of Fig. 3
for two different values of the coupling constant. Note that this
scaling relation implies that in the thermodynamic limit, the order
parameter vanishes as m(σ ) ∼ (σc − σ )1/2, the typical mean
field result. Similarly, the fluctuations can be fitted by the form
χ(σ ,N) = Ncfχ

(
εNb

)
, with c ≈ 0.67 and fχ the appropriate

scaling function, as demonstrated in the right panels of Fig. 3 again
for two different values of the coupling constant. This implies that
in the thermodynamic limit, the fluctuations diverge as χ(σ ) ∼
|σc − σ |−γ with γ = c/b ≈ 2.

3.2. Globally coupled Landau–Ginzburg model with multiplicative
quenched noise

We now consider the case in which the quenched noise couples
multiplicatively to the variable xi:

ẋi = (a + ηi) xi − x3i + C (X − xi) . (13)

This model has been studied extensively in the case that the
ηi’s are independent white noises and it has been found that an
increase in the noise intensity leads to a transition from disorder
to order [1,36–38]. We want to compare the predictions of the
self-consistency equationwith the order parameter expansion and
numerical simulations to check if a similar result holds in the case
of quenchednoise.Without coupling (C = 0) Eq. (13) is a prototype
of supercritical pitchfork bifurcations (see e.g. in [39]) with two
possible sets of solutions: xi = 0 is the stable solution whenever
a + ηi ≤ 0, or xi = ±√

a + ηi are stable solutions and xi = 0 is
unstable for a + ηi > 0.

To study the consequences of coupling, C > 0, we use the
above developed order parameter expansion approximation. After

Fig. 3. Finite-size scaling analysis of the Landau–Ginzburg model with additive
quenched noise. Rescaled simulation data for low coupling (top graphs, σc = 1.094)
and high coupling (bottom graphs, σc = 6.203). Ensemble average m (left) and
fluctuations χ (right) as defined in the main text. Exponents: b = 0.33, c = 0.67.
Ensemble sizes: N = 103, 104, 105 (circles, squares, diamonds). In all cases: a = 1.
Here, σc has been determined to a high degree of accuracy by using the numerical
solution of Eq. (3).

setting H = 〈ηi〉 = 0, the equations are:

Ẋ = aX − X3 − 3XΩ + W , (14a)

Ω̇ =
(
2a − 6X2 − 2C

)
Ω + 2XW , (14b)

Ẇ =
(
a − 3X2 − C

)
W + Xσ 2. (14c)

The equilibrium condition (7) leads to:

0 = a X − X3 − 3X3σ 2

(
C − a + 3 X2

)2 + Xσ 2

C − a + 3 X2 . (15)

Similarly to the uncoupled case this equation has two different
regimes of solutions: On one hand, if a ≥ 0 the stable solutions of
Eq. (14) are X = ±√

a for σ = 0. As σ increases, |X |monotonically
increases as well (see Fig. 4, left). On the other hand, if a < 0
then X = 0 is a stable solution for small σ . At some value σc it
becomes unstable and a fork of solutions grows out of zero (see
Fig. 4, right). σc is determined by Eq. (15) and is related to a and C
by:

σ 2
c = a (a − C) . (16)

σc identifies a second order phase transition from disorder to order
(i.e. from X = 0 to X 0= 0). In this case of a < 0, the value σc grows
monotonously with coupling strength C , a rather counterintuitive
observation, since it means that the coupling hinders the ordering
and more structural disorder is needed to induce macroscopic
order (Fig. 5).

The numerical solution of the self-consistency equation (3) is
qualitatively similar to the results of the order parameter expan-
sion approximation, however |X | does not increase monotonically
with increasingσ . It rather reaches amaximumanddecreases after
that approaching zero asymptotically. Note that his is not a (reen-
trant) phase transition since |X | = 0 is only reached for σ → ∞.
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Fig. 4. Bifurcation diagram of the Landau–Ginzburg model with multiplicative quenched noise. Positive values of a show order without noise (left: a = 0.1), whereas
negative values show order only with a finite value of the noise intensity (right: a = −0.5). In both panels it is C = 10. The order parameter expansion approximation
scheme gives a monotonous solution while the exact solution of Eq. (3) reaches a maximum and decreases for large σ (grey line). Symbols are the result of direct numerical
simulations of Eq. (13) averaged over 103 realizations of the quenched noise variables ηi and initial conditions. N = 103, 104, 105 (circles, squares, diamonds).

Fig. 5. Critical noise for bifurcation versus coupling strength for a = −0.5 for the
Landau–Ginzburgmodel withmultiplicative quenched noise. The prediction by the
order parameter expansion is shown as continuous line, the exact solution (3) is
shown as dotted line.

Fig. 6. Finite-size scaling analysis of the Landau–Ginzburg model with multiplica-
tive noise for a = −0.5, C = 10. Rescaled ensemble average m (left) and fluc-
tuations χ (right) of 103 numerical simulations with N = 103, 104, 105 (circles,
squares, diamonds). Critical point, as from Eq. (3), is σc = 2.169; exponents:
b = 0.5, c = 0.5.

The simulation results for the order parameter are shown as
symbols in Fig. 4. At this scale no finite-size effects can be seen at
the phase transition. In a thorough data analysis with finite-size
scaling relations at σc , in the way we did in the first example, we
found exponents of b ≈ c ≈ 0.5 to fit the order parameter and
fluctuations (see Fig. 6). These scaling relations imply, again in the
thermodynamic limit, that the order parameter vanishes and the
fluctuations diverge asm(σ ) ∼ (σc−σ )1/2 andχ(σ ) ∼ |σc−σ |−γ ,
with γ = c/b ≈ 1 respectively.

3.3. Canonical model for noise-induced phase transitions

As the last example we will study a model for which a genuine
phase transition induced by multiplicative noise has been shown
[8,9] with the feature that the ordered phase is reentrant, it
only exists for intermediate noise intensities. The equation for an
individual element is:

ẋi = −xi
(
1 + x2i

)2 +
(
1 + x2i

)
ηi + C (X − xi) (17)

and the reduced system according to Section 2.2 (again setting
〈ηi〉 = 0) reads:

Ẋ = −X
(
1 + X2)2 + 1

2
[
−12

(
1 + X2) X − 8 X3] Ω

+ 2 XW (18a)

Ω̇ = 2Ω
[
−

(
1 + X2)2 − 4 X2 (

1 + X2) + C
]

+ 2W
(
1 + X2) (18b)

Ẇ = W
[
−

(
1 + X2)2 − 4 X2 (

1 + X2) + C
]

+ σ 2 (
1 + X2) . (18c)

The equilibrium condition (7) becomes

0 = −X
(
1 + X2)2 +

(
−

(
6 + 6 X2

)
X − 4 X3

)
σ 2

(
1 + X2

)2
(
1 + 6 X2 + 5 X4 + C

)2

+ 2
Xσ 2

(
1 + X2

)

1 + 6 X2 + 5 X4 + C
. (19)

Eqs. (18) have the stable solution X = 0 for σ < σc or a pair
of symmetric solutions X 0= 0 for σ > σc , when X = 0
becomes unstable (see left panel of Fig. 7). The value of σc indicates
the location of a second order phase transition. It follows from
analyzing the Jacobian of (18a)–(18c) and calculates to:

σc = 1 + C√
2C − 4

. (20)

Accordingly, a minimal coupling C > 2 is necessary to induce the
phase transition. An analysis of this relation shows that σc has a
minimum with respect to C . Therefore, see Fig. 8, the transition
is predicted to be reentrant with respect to C: the ordered
phase only exists in a range of values for C , with the surprising
prediction that too a large coupling destroys the ordered state. The
predictions of the order parameter expansion are in qualitative
agreement with those obtained after solving the self-consistency
equation. However, whereas the order parameter expansion
predicts incorrectly that the order parameter monotonously
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Fig. 7. Bifurcation diagram of model (17) (left). Order parameter expansion (thick black line) and exact solution (grey line) together with the ensemble average of 103

numerical simulations for N = 103, 104, 105 (circles, squares, diamonds). Coupling is C = 10. On the right the unscaled fluctuations are shown.

Fig. 8. Critical noise intensity versus coupling strength for model (17). The
prediction (20) of the order parameter expansion (continuous line) and the exact
solution (3) as dotted line. Only the latter shows reentrance with respect to σ .

increases with σ , as shown in Fig. 7, the self-consistency equation
instead predicts that the transition is reentrant alsowith respect to
the quenched noise intensityσ , see Fig. 8. Both reentrant behaviors
were observed in the case of time-dependent noise [8,9].

Again we have compared the predictions with the numerical
integration of the set of Eq. (17). The simulation results are shown
as symbols in Fig. 7. Due to finite-size effects the theoretical results
are approached with increasing number N of particles, reentrance
and the dependence of σc from C are observed. Analyzing the data
as we have done with the other examples, we find exponents for
the scaling relations of b ≈ 0.33 and c ≈ 0.67. As in the first
case this implies the relations m(σ ) ∼ (σc − σ )1/2 and χ(σ ) ∼
|σc − σ |−γ , γ = c/b ≈ 2 in the thermodynamic limit. Fig. 9
summarizes the fitted simulation data.

4. Conclusions

In this paper we have constructed an approximate analytical
scheme based on the order parameter expansion [24–28] to
study the macroscopic behavior of extended systems which are
globally coupled. We have used the method to study in detail the
phase diagram of three widely used models of phase transitions
in scalar systems: the Landau–Ginzburg scalar model with both
additive and multiplicative quenched noise and a genuine model
for noise-induced phase transitions where time-dependent noise
has been replaced by quenched, time-independent noise coupled
multiplicatively to the dynamical variable [8].

We have compared the results of our simple approach with
those coming from a numerically involved, but in principle
exact, treatment based on the self-consistency relation and with

Fig. 9. Rescaled simulation data for the first (top) and the second (bottom) phase
transition (C = 10). Mean value (left) and fluctuations (right) for ensembles of
N = 103, 104, 105 (circles, squares, diamonds). Critical points, as from Eq. (3), are
σc = 2.749 for the first and σc = 5.169 for the second transition. Exponents are:
b = 0.33, c = 0.67.

extensive numerical simulations of the corresponding dynamical
equations for each model. In the case of additive noise, the main
result is that macroscopic order is destroyed when increasing the
intensity of the quenched noise. In the other two cases, when noise
appears multiplicatively, we find that macroscopic order appears
for an intermediate value of the intensity of the quenched noise.
Since the quenched noise can represent, for instance, diversity
or heterogeneity, it appears paradoxically that some amount of
structural disorder is needed in order to observe macroscopic
order.

Furthermore it has been shown numerically, that all investi-
gated models follow a finite-size scaling law and the exponents
have been determined. It suggests a common universality class
for the Landau–Ginzburg model with additive quenched noise and
the canonical model for noise-induced phase transitions, whereas
the Landau–Ginzburg model with multiplicative quenched noise
yields different exponents. A more detailed analysis of the finite-
size relations and their possible dependence with the system pa-
rameters will be presented elsewhere [40].
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The method of order parameter expansion, which we lead
consistently up to terms of second order, is a tool which reduces
large systems to only a couple of reduced variables. The advantage
is its very easy management. In this paper we have proven that
reliable conclusions can be drawnwith that method in some cases.
Since it is an expansion aroundmean values, designed to be applied
near the homogeneous state, the method yields good results for
low values of the intensity of the quenched noise or for high
synchronization of the subunits. Otherwise, the method might not
be reliable. As a consequence the reentrant phase transitions were
not predicted in the studied cases for multiplicative noise. It is
an open issue how to modify the method in order to predict the
reentrant transitions.
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