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The purpose of this paper is to analyze in some detail the arguably simplest case of diversity-
induced resonance: that of a system of globally-coupled linear oscillators subjected to a periodic
forcing. Diversity appears as the parameters characterizing each oscillator, namely its mass,
internal frequency and damping coefficient are drawn from a probability distribution. The main
ingredients for the diversity-induced-resonance phenomenon are present in this system as the
oscillators display a variability in the individual responses but are induced, by the coupling, to
synchronize their responses. A steady-state solution for this model is obtained. We also determine
the conditions under which it is possible to find a resonance effect.
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1. Introduction

Many situations of interest can be modeled by a
forced system whose output depends on some exter-
nal forcing. Examples can be found in physics,
ecology, chemistry, economics, biology and other
sciences. For instance, the response of a neu-
ron depends strongly on the input currents, such
that a pulse is produced only when the total
input surpasses some threshold value. In some
cases, the system is under the action of a peri-
odic forcing and the response can be quanti-
fied by the amplitude of the periodic oscillations
that the system performs at the frequency of the
input. A classic example is that of a forced lin-
ear pendulum with damping terms. It is known
that the response is optimal — the amplitude
of the pendulum oscillations reaches a maxi-
mum — when the natural frequency of the oscillator

matches that of the external forcing. In the case of
nonlinear oscillators, a more complex behavior can
appear and the region in which the system synchro-
nizes to the external forcing might depend on the
values of the parameters characterizing the system
[Pikovsky et al., 2001; Jackson, 1991; Scott, 2005;
Winfree, 1987].

A few decades ago, a particularly interest-
ing resonance effect induced by random terms in
the dynamics was discovered. This important phe-
nomenon, known as Stochastic Resonance [Benzi
et al., 1981; Nicolis & Nicolis, 1981], shows that dis-
order, in the form of dynamical noise, can improve
the response of a nonlinear dynamical system to
an external stimulus. This counterintuitive effect of
noise, first proposed to explain the observed peri-
odicity of ice-ages, has since then been extended
to a large variety of systems, including bistable,
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excitable and chaotic systems [Gammaitoni et al.,
1998; Bulsara et al., 1993]. The main result is
that, under some very general conditions, the right
amount of noise can help achieve a maximal syn-
chronization of the dynamical variables in response
to an external forcing. This phenomenon results in
a resonance curve where some adequate measure R
of the system’s response shows a maximum for a
particular value of the noise intensity D, with the
response diminishing for smaller or larger D. The
generic mechanism for the resonance is the match-
ing of some characteristic time scale of the forcing
(e.g. the period) with a characteristic time induced
by the noise (e.g. the Kramers time for jumping
over a potential barrier). Examples of this phe-
nomenon occur in a wide variety of fields, includ-
ing paleoclimatology, chemical reactions, neuronal
systems, lasers and biological environments [Gam-
maitoni et al., 1998].

A different mechanism that also profits from
disorder to enhance the response to an external
stimulus has been shown by Tessone et al. [2006].
The basic idea is to take advantage of the diver-
sity that appears in an extended system com-
posed of many constituents. It is obvious that, in
many systems in biology, physics and economics,
it is necessary to take into account the fact that
the underlying constituents are not identical. The
usual assumption that the constituents are identi-
cal is only an approximation which is usually taken
for reasons of mathematical simplicity. This diver-
sity of the elements can have many different ori-
gins: heterogeneity in a parameter (equivalent to
quenched noise), heterogeneity in the network of
connectivities or in their strength, etc. In fact, one
of the main points by Tessone et al. [2006] is to
argue that any source of disorder is able, under the
right circumstances, to enhance the response to the
forcing.

More precisely, Tessone et al. [2006] considered
a system composed of N coupled bistable-double
well potential-units, subjected to an external weak
periodic signal. Diversity is introduced as the vari-
ability of a set of parameters ai,k =1,..., N that
control the relative stability of each bistable state of
the potential. If the parameter a; is equal to zero
for unit k the two potential wells have the same
depth. For a; > 0, the well on the right is deeper
than the one on the left and vice-versa for a; < 0.
A weak periodic signal acts upon all the units. By
weak it is meant that the signal cannot induce jumps
between the two potential wells in the symmetric

case ap = 0. It is assumed that the a;’s follow a dis-
tribution of average value (a;) = 0 and variance .
It is further assumed that the units are positively
coupled and, hence, they all tend to stay in the same
well. The mechanism for resonance is as follows: If
o = 0, the signal is subthreshold for all units and
the system responds globally with just small oscil-
lations; as o increases some of the units are able to
follow the signal during the half-period in which the
signal goes in the direction of the preferred well; in
the other half of the period, a different set of units
follow the signal. The units which follow the signal
pull the other units, to whom they are attractively
coupled, and the collective effect is that a signifi-
cant fraction of the units is able to respond to the
external forcing. If the diversity o is too large, the
units are very different from each other and some of
them offer a strong resistance against following the
signal, resistance which cannot be overcome by the
coupling between units.

Complementary to this microscopic mechanism
for resonance in which one analyzes the behav-
ior of individual units, it is also possible to give
a macroscopic explanation in which one focuses
only on the behavior of the global variable that
represents the system (usually, simply the sum of
all individual variables). The diversity induces a
degradation in the global order that results in the
lowering of the effective potential barrier separat-
ing the two stable states of the collective system.
The barrier can then be more easily overcome by
the external forcing [Toral et al., 2007]. The col-
lective effect can then be understood as the result
of the degradation of order induced by diversity.
What is worth noticing is that any source of disor-
der would lead to a similar effect. This explanation
sheds new light on the phenomenon of stochastic
resonance in extended systems [Lindner et al., 1995;
Wio, 1996] in which the disorder is induced by
noise. In other cases, it is the disorder induced by
the competitions in the network of connectivities
between the units that induces further disorder and
drives the resonance [Vaz Martins et al., 2008]. As
argued by Tessone et al. [2006] the proposed mech-
anism is generic and might appear in a large variety
of systems of interest in many different fields. For
instance, the role of the heterogeneous complex net-
work topology in the amplification of external sig-
nals has been addressed by Acebrén et al. [2007] and
a recent work [Cheng et al., 2007] has shown that
structural diversity enhances the cellular ability
to detect extracellular weak signals. The interplay
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between noise and diversity in an ensemble of
coupled bistable FitzHugh—Nagumo elements sub-
ject to weak signal has been considered by Gassel
et al. [2007]. Tessone et al. [2007] reveals that the
general mechanism for collective synchronized fir-
ing in excitable systems arises from the degrada-
tion of order. The ability of diversity to enhance
coherent behavior in networks with attractive and
repulsive excitable systems has been addressed by
Cartwright [2000]; Leyva et al. [2006] and Tes-
sone et al. [2008]. The combined effects of noise
and variability in the synchronization of neural ele-
ments have been studied by Glatt et al. [2008]. Spa-
tial patterns in a Swift-Hohenberg system induced
purely by diversity in the form of quenched dichoto-
mous disorder were found by Buceta and Linden-
berg [2003].

Although surprising at first, the idea that diver-
sity in the units forming a large system can improve
the response to an external signal is not against our
experience [Page, 2008]. For example, a society can
respond to changes in the economy if it is formed
by diverse agents, such that a fraction of the popu-
lation is successful at different times. It is the pos-
itive interaction between the agents that can cause
the whole population to respond successfully to the
changing environment.

The mechanism proposed for resonance is very
simple and requires only generic ingredients. It
is the purpose of this paper to analyze in some
detail the arguably simplest case: that of a sys-
tem of globally-coupled linear oscillators subjected
to a periodic forcing. Coupled linear oscillators
parametrically forced by block pulses with initially
random phases have been studied by Bena et al.
[2002]. In our case, the (additive) forcing is com-
mon to all oscillators and diversity appears as the
parameters characterizing each oscillator, namely
its mass, internal frequency and damping coeflicient
are drawn from a probability distribution. The main
ingredients for the diversity-induced resonance phe-
nomenon are present in this system as the oscilla-
tors display a variability in the individual responses
but are induced, by the coupling, to synchronize
their responses. The paper is organized as follows:
in the next Sec. 2, we will define precisely the model
and parameters and solve the equations of motion
for the steady state. Once the main formulas are
established, in Sec. 3, we will analyze under which
conditions it is possible to find the resonance-effect.
Finally, in Sec. 4, we will end with a brief conclusion
and outlook.

2. Linear Model and Solution

We consider a system of N globally coupled lin-
ear oscillators with canonical variables (zy, px), k =

1,..., N, whose evolution is given by:
. Pk
T — —
my,
Pk = —lpk — mywiak
M (1)

N
+%Z i — ) + F cos(Q2t),
\ J=1
or the single equivalent equation:
o
mkﬁﬂ'k = —'yks'ck — mszxk + N Zl(x
+ Feos(Qt). ! 2)
Here, my, v and wy are, respectively, the mass,
the damping coefficient and the natural frequency
of oscillator k. mj and 7, are assumed to take only
positive values. The external forcing F cos(§2t) acts
upon all oscillators. The all-to-all coupling term
represents the tendency of all oscillators to act syn-
chronously when the coupling coefficient x is posi-
tive. This term can also be written as:

% Z:: —xy) = k(T — xy), (3)

j— Tk)

where
7(0) = 5 Do) ()

is the collective (or mean-field) variable. In the
absence of forcing, F' = 0, the dynamical system can
be written as relaxational dynamics [San Miguel &
Toral, 2000] in a Hamiltonian

N
LYk, o 2
H= Z + kﬂfk+2N;($ )7,
(5)
in the form
o
ik 0 1 ﬁxk
.= : (6)
p) "\ ) | o
Opy

0

Since the matrix (71 fw) can be split into symmet-

. . . . 0 0 01
ric and antisymmetric matrices (0 ,%>+<,1 0),
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and the symmetric part does not have positive
eigenvalues, the Hamiltonian H is a Lyapunov func-
tion of the dynamics [San Miguel & Toral, 2000]. It
is easy to show directly that the energy decreases

steadily:
N

dH OH . OH

T2 o
N

=Y <o, (7)
my

k=1

hence the system relaxes to the minimum of H: pp =
xp = 0,V k. The external forcing F cos(§2t) injects
energy and produces a final state in which the vari-
ables (z, p) oscillate in time with the frequency €.
Introducing the complex notation z, = 3, +iQ~ iy,
we get:

MEEE = —Vkik — MEWi2k
+ k(Z — z,) + Fe™ ™% (8)

with 2 = N1 Z;qulzk' After a transient time, the
variables z;(t) tend to z(t) = are™ ¥ with ay, k =

1,...,N a set of (complex) constants. Replacing

this expression in the previous equation one obtains:
F + ka

ay = (9)

my(wi — Q2) + k — i QY

where

N
a:N_IZak. (10)
k=1

The last two equations form a closed system from
which the aj’s can be obtained. Straightforward
algebra leads to:

a FG
= — = 11
ag GGka a 1 — HG7 ( )
where G}, and G are defined as:
1N
G= > G,
k=1 (12)
1
G =

my(w? — Q%) + Kk — iy QL

In the previous equations, note that coupling
acts in two different ways: in the k-independent
prefactor, i.e. as a collective effect acting equally on
all the oscillators, and as the k-dependent second
factor, which can be understood as a renormaliza-
tion of the resonant frequency of the oscillator k
from wy, to @k, with mpo? = myw? + K.

A standard measure [Gammaitoni et al., 1998]
of the global response R is the modulus of the mean
variable Z normalized to the external input R =
|Z]2/F?, or

G 2

1—-&xG

R= ‘ (13)

This is more easily computed in terms of the real
and imaginary parts of G = Ay + By, as:

(Ar)* + (Bp)?

=T oA + R2A T By Y
with
Ly
<Ak> = X7 Aka
Nia (15)
A — my(w — %) + K
FT (W - Q%)+ R)? 1207
1 N
(Br) = > B,
k=1 (16)

V€2

B = .
FT (ma(wf = 92 + R)2 702

The expressions above are valid whatever the
value of the number of oscillators N. In the case
that the number of oscillators is very large, the sums
can be replaced by averages with respect to a prob-
ability distribution f(I") in the space of parameters

L = (mg, wi, 1):
1
y S0 = {80 = [arssm). an

f(T') being the probability density function of the
set of parameters I'y, and S(I") any function depend-
ing on those parameters.

If we write ap = |ag|e’®* then, after a tran-
sient time, the K = 1,..., N linear oscillators z, =
lag|e'=H+o) oscillate in time with a frequency €
and phase ¢p. If all parameters (mg,wg, Vi) are
identical, the modulus |ax| and the phases ¢ are
identical for all oscillators. If any of the parame-
ters in the set (mg,wg,vx) varies from one oscilla-
tor to another, there is a dispersion in amplitudes
and phases, as will be shown in detail in the next
section.

There are several possible ways to quantify this
dispersion in the individual dynamical output. A
convenient one is to use the variance of the variables
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zr, normalized by the average value of the modulus
squared:

N
NN |z — 2
k=1

N
N=ES "z
k=1

52
_ (e —2F) j‘ ). (18)

(lz&l?)
In the case of no dispersion, 02[z;] = 0; because
of the normalization, the maximum value is

02[z;] = 1. We define a measure of order as:

p= VT2 = . (19)

onlak] =

(l2&*)
The definition is such that p = 1 in the case of no
dispersion, 02[z;] = 0 and decreases to p = 0 as

the dispersion increases. Moreover, in the case that
all units oscillate with the same amplitude |zi|, the
definition reduces to the famous order parameter
Kuramoto introduced in his studies of phase syn-
chronization [Kuramoto, 1984]. Within the context
of this work we will denote by pg the Kuramoto
order parameter:

1
52
k=1

We also introduce a measure of the dispersion in
the amplitude of the oscillators, p,| as:

Py = = [(e"")| (20)

(l2k]?)
It reaches the maximum value p|,| = 1 in the case of
no dispersion in the modulus of the oscillators and
decreases towards zero as the dispersion increases.
The measure of order p can be computed as:
(Ar)* + (Bk)*.

vy 22

the Kuramoto order parameter can be computed as:

P =V (ar)? + (Bk)? (23)

Plz| =

with
mg(wi — %) + K
A = ) (24)
Vmi( = 92) + 1) + 4702
Q
B = Jk (25)

Vma(f = 92) + 1) + 5202
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and, finally, the measure in the dispersion of the
modulus of the oscillators can be written as:

V(AR +(BY)

3. Results

Most of the results in this section (except in one
case at the end of the section) consider that the
diversity only appears in the natural frequencies wy,
of the oscillators. These are drawn from a Gaussian
distribution of mean wg and variance 2. Since o
is a measure of the dispersion in the frequencies,
it will be considered as the measure of the diver-
sity. For most of the section, and in order not to
introduce too many variable factors in the anal-
ysis, we will take the masses, myj, and damping
constants, v;, to have the same values in all the
units.

The main result of this paper is summarized in
Fig. 1 where we plot the global system’s response
R, as given by Eq. (13), versus the diversity para-
meter o for different values of the frequency 2
of the external forcing. It is clear from this fig-
ure that, for values of €2 smaller than the average

120 i T T T

Q=1.1
100 T e 0=1.0 ]

s 0=0.9
8o [ S Q=08
e Q=07 ]
&60F,, /o -

Fig. 1. Plot of the response R, Eq. (13), versus the diver-
sity parameter o for the different values of frequency €2 of
external forcing. The natural frequencies wy, of the oscilla-
tors have been drawn from a Gaussian distribution of mean
wop = 1 and variance o2. Other parameters are: mg = 1,
v, = 0.1, kK = 1. Observe that, when the forcing frequency 2
is below the mean frequency of the oscillators wqg, the max-
imum response appears at a nonzero value of the diversity
parameter o and that multiple maxima can appear for some
particular values of ).
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Fig. 2. Two-dimensional plot of the response R versus the
frequency of the external forcing €2 and the rms o of the
Gaussian distribution (mean value wg = 1) of the internal
frequencies wy. Other parameters are my = 1 and: v, = 0.1,
k = 1.0 (top left); v = 0.1, k = 0.5 (top right); v = 0.1,
k = 0.1 (bottom left); v = 1.0, k = 0.1 (bottom right). Cuts
at constant 2 were displayed in Fig. 1, but two-dimensional
plots help to fully visualize the regions in parameter space in
which a maximum response occurs.

value wy, the response increases and goes through a
maximum — a resonance — as the diversity param-
eter increases. In fact, as can be seen in the fig-
ure, for  close to wp, there can be two peaks
in the resonance. Those peaks merge into a single
one, with decreasing height, as ) decreases. The
regions of existence of the resonance can be better
observed in a two-dimensional plot of the response
as a function of the diversity o and the frequency
Q, see Fig. 2. Note that, according to this figure,
the resonant frequency moves with o to regions
where there was no strong response in the absence
of disorder.

The microscopic argument to explain the res-
onance is very simple: When o = 0 all oscillators
have the same frequency wgy. The response is opti-
mal for wy = Q. If wy # Q the oscillators are not
at the optimal value. Then, as ¢ increases, some
oscillators will have frequencies close to €2 and will
tend to have a larger response. It is those oscillators
that, through the coupling term, pull the others
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Fig. 3. Plot of the measure of order p, Eq. (19), character-
izing the dispersion of the position of the oscillators, as a
function of the diversity parameter o for different values of
the frequency €2 of the external forcing. The natural frequen-
cies wy of the oscillators have been drawn from a Gaussian
distribution of mean wy = 1 and variance o2. Other param-
eters are: my, = 1, v, = 0.1, kK = 1. Values of p close to 1
correspond to low dispersion in the position of the oscilla-
tors. Note that the order parameter decays when increasing
the diversity parameter o. This dispersion can be observed
in the phase-space plots of Figs. 6 and 7.

and produce the large response of the collective
variable Z.

As argued by Tessone et al. [2006], the increase
in the response is accompanied by a decrease in the
order (but not necessarily vice-versa). This is clearly
illustrated in Fig. 3 where we plot the measure of
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Fig. 4. Same as Fig. 3 for the Kuramoto order parameter pg,
Eq. (20), characterizing the dispersion in phase of the oscil-
lators. A maximum phase dispersion, low p, values, can be
observed for €2 > wg and intermediate values of the diversity
parameter o.
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Fig. 5. Same as Fig. 3 for p,|, Eq. (20), characterizing the

dispersion in modulus of the oscillators. Note that the dis-
persion increases when the diversity parameter increases (as
in the previous measures, low dispersion in the modulus |z |
corresponds to values of p|| close to one).

order p, as defined in Eq. (19), as a function of
the diversity parameter o for different values of the
frequency 2 of the external forcing. As shown in
Fig. 4, the Kuramoto order parameter stays close
to the value psy = 1 for values of ¢ where the res-
onance appears but the dispersion in the ampli-
tude, as measured by pj.|, increases with o, see
Fig. 5. This shows that the oscillators lose their
order through a dispersion of the modulus of their
amplitude. In other words, they follow the external
signal with similar phases, but with different ampli-
tudes. Figure 6 helps to demonstrate this effect. We
plot in this figure the trajectories in the complex
plane z, equivalent to the phase space (x,2). When
o = 0, all units have the same amplitude and phase
and oscillate with the external frequency €. As o
increases, the average value Z oscillates with a larger
amplitude (and always with the frequency 2 of the
external forcing) and the individual units oscillate
with nearly the same phase but with different ampli-
tudes, producing the dispersion that can be seen in
the figure.

Coupling is essential for the resonance effect.
In Fig. 7, we plot the phase space in the case of
absence of coupling for the same set of parame-
ters as those of Fig. 6. As can be seen in this
figure, the response always decreases when increas-
ing the diversity. What it is somewhat surpris-
ing is that a too large coupling also diminishes
the response. This is observed in the surface plot
of Fig. 8. The decrease of the response for large
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Fig. 6. Phase space zj, = (x5, Q '@y, for different values of

the diversity parameter o. The natural frequencies wy of the
oscillators have been drawn from a Gaussian distribution of
mean wo = 1 and variance o2. Other parameters are: mj, = 1,
v = 0.1, kK = 1, Q = 0.9. The solid dot is the position of the
mean value Z of N = 10000 oscillators, while the crosses
indicate the position of 20 of those oscillators. The circle has
the radius of the modulus of zZ. All points rotate clockwise
with the circular frequency €2 of the external forcing. The
resonance effect described in the text manifests itself as the
radius of the circle increases and decreases as the diversity
parameter o grows.

coupling is also evident in Fig. 9 where we use
the same value of the frequency as in Figs. 6
and 7.

So far, we have focused our attention on the
case of variability in the distribution of internal fre-
quencies wg. It is not the intention of this paper
to overwhelm the reader with many figures cov-
ering the many possibilities of dispersion in the
different parameters. We want to finish by plot-
ting in the final Fig. 10 the resonance effect that
appears when both the frequencies wyp and the
damping coefficients 7, vary from one unit to the
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Fig. 7. Same as Fig. 6 in the no-coupling case, k = 0. The
solid dot is the position of the mean value Z of N = 10000
oscillators, while the crosses indicate the position of 20 of
those oscillators. The circle has the radius of the modulus
of Z. It can be clearly seen that this radius decreases with
increasing diversity hence showing that the resonance effects
only appear in the presence of coupling. Compare with the
nonmonotonous behaviors observed in the coupled case of
Fig. 6.

other. To maintain positivity of the damping coeffi-
cients, we have chosen a log-normal distribution for
both parameters. More concretely, we have taken
wir = woTr and v = Yo7k, where 7 follows a log-
normal distribution of mean 1 and rms o. It is
clear that a strong resonance effect appears as a
function of the diversity o (measured now as the rel-
ative, normalized to the mean value, rms of the log-
normal distributions). Note that, for this particular
set of parameter values, the maximal response is
much larger than the maximum response obtained
when the external frequency equals the mean value
wo = Q.

Fig. 8. Two-dimensional plot of the response R versus the
coupling k and the rms o of the Gaussian distribution (mean
value wg = 1) of the internal frequencies wy. Other param-
eters are my = 1, v, = 0.1 and ©Q = 0.8 (top left), 2 = 0.9
(top right), @ = 1.0 (bottom left), @ = 1.1 (bottom right).
Although, as discussed in Figs. 6 and 7, coupling is essen-
tial for the resonance effect, a too large coupling diminishes
the response. In this sense, there is an optimal value of the
coupling leading to a maximum response.

o0

60|

40

20/

Fig. 9. Plot of the response R, Eq. (13), versus the cou-
pling parameter . The natural frequencies w;, of the oscilla-
tors have been drawn from a Gaussian distribution of mean
wo = 1 and variance o2. Other parameters are: mj = 1,
v = 0.1, © = 0.9, 0 = 0.5. The maximum response occurs
for intermediate values of the coupling constant k, a general
feature than can also be observed in Fig. 8.
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Fig. 10. Plot of the response R, Eq. (13), versus the diversity
parameter o for different values of the frequency €2 of the
external forcing. The natural frequencies wy, and the damping
parameters 3 have been drawn from a common lognormal
distribution of mean values wg = 1, v9 = 0.1, and rms owyg,
70, respectively (see the text for details). Other parameters
are: my = 1, k = 0.2. This figure illustrates the fact that
resonances appear when diversity affects several parameters
as well.

4. Conclusion

In this paper we have studied an ensemble of glob-
ally coupled linear oscillators subjected to periodic
forcing. Diversity appears as each unit of the ensem-
ble has different characteristic parameters, although
we have focused our main attention on the case
in which only the natural frequencies vary from
one oscillator to another. Our intention has been
to analyze with some detail an exactly solvable
model that displays the phenomenon of diversity-
induced resonance, namely, that the global response
to the external forcing is enhanced by the pres-
ence of diversity in the units. We have been able
to give explicit expressions for the global response
and some measures of the order in the positions,
phases and modulus of the units of the ensemble.
The details of the phenomenon bear some sim-
ilarities, but also some differences, with previous
studies in more complicated systems. The main
microscopic mechanism is as follows: In the no-
diversity case, all units have the same natural fre-
quency, which is different from the frequency of
the external forcing. As the diversity in frequen-
cies increases, a fraction of the units have a fre-
quency that matches that of the external forcing
and are then resonant with it. Those units are able,
through the coupling terms, to pull the other units
and the global, average, variable is able to dis-
play large amplitude oscillations. As the diversity
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increases even further, the difference between the
units increases. Some of them have then a frequency
too far away from the external frequency and tend
to follow the forcing with a small amplitude, hence
diminishing the global response. The main differ-
ence with the mechanism analyzed in double-well
systems [Tessone et al., 2006] is that, as described
in the introduction, in those systems the units that
are able to follow the forcing vary from time to time.
That case is thus more useful to model situations of
a changing environment.

The analytical solution of the linear equations
of motion allows a full analysis of the problem. As
implied in reference [Tessone et al., 2006], see also
[Toral et al., 2007], the enhancement in the response
appears together with a decrease in the macroscopic
order. We have introduced appropriate measures of
this order in terms of the dispersion in the locations
of the oscillators in phase space. Those measures
show that the loss of order is mainly in the ampli-
tude of the oscillations whereas the phases show
a much smaller dispersion. We are currently inter-
ested in studying which of these features remain
when considering the enhancement in the response
of nonlinear oscillators induced by diversity. The
results will be reported elsewhere.
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