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We present an extensive numerical study on the behavior of spherical brushes confined into a
spherical cavity. Self-consistent field !SCF" and off-lattice Monte Carlo !MC" techniques are used
in order to determine the monomer and end-chain density profiles and the cavity pressure as a
function of the brush properties. A comparison of the results obtained via SCF, MC, and the Flory
theory for polymer solutions reveals SCF calculations to be a valuable alternative to MC simulations
in the case of free and softly compressed brushes, while the Flory’s theory accounts remarkably well
for the pressure in the strongly compressed regime. In the range of high compressions, we have
found the cavity pressure P to follow a scale relationship with the monomer volume fraction v,
P#v!. SCF calculations give !=2.15"0.05, whereas MC simulations lead to !=2.73"0.04. The
underestimation of ! by the SCF method is explained in terms of the inappropriate account of the
monomer density correlations when a mean field approach is used. © 2009 American Institute of
Physics. $doi:10.1063/1.3238568%

I. INTRODUCTION

Large sets of polymer chains terminally anchored or end
grafted to a surface !known as “polymer brushes”" are rel-
evant in many areas of polymer science and technology rang-
ing from medical and biological applications1–3 to
nanotechnology4–7 and responsive systems.8–10 Polymer
brushes anchored to planar surfaces were the first to be stud-
ied and characterized. Since the seminal works of de
Gennes11 and Alexander12 a remarkable progress has been
done in the understanding and design of new applications
involving flat brushes.13–24

In a subsequent stage polymer brushes grafted at curved
interfaces either concave25–31 or convex32–35 have been stud-
ied. In concave !respectively convex" brushes the volume
available to the polymer chains decreases !respectively in-
creases", as the chains move away from the interface. A con-
vex case of particular interest are spherical particles with
polymer!polyelectrolyte" chains attached to their outer sur-
faces. Such systems are known as spherical polymer!poly-
electrolyte" brushes, hairy particles or star polymer brushes.
Spherical polymer brushes are very interesting systems due
to their multiple possible uses: drug delivering,1,36 stabiliza-
tion of colloidal particles,37,38 mimicking of hard spheres,39

creation of bioinspired materials,40 smart catalyst,9 etc. The
study and characterization of polymer and polyelectrolyte
spherical brushes have received considerable attention in-
cluding experimental works,41,42 theoretical33,43,44 and self-
consistent field !SCF" developments,44–51 as well as numeri-
cal simulations.17,32,42,52–58 The determination of the pairwise
interaction59–64 and the study of solutions of spherical

brushes65–68 have also been studied extensively. Nonetheless,
despite the large insight obtained from these works, the be-
havior of spherical brushes in constrained geometries is still
poorly understood and has only been addressed in few
works: the behavior of spherical brushes and star polymers
within slit geometries has been recently addressed by
Romiszowski–Sikorski,69 while the behavior of concave
spherical brushes and three layer onion type micelles has
been studied by Prochazka and co-workers.26,27,70 To our best
knowledge, the behavior and properties of simple spherical
convex brushes confined within spherical bare cavities have
not been investigated yet. In addition to the academic inter-
est, the knowledge about how convex brushes behave within
a cavity can also provide a helpful insight into the under-
standing of nanobrush particles encapsulated within compos-
ite materials,6 the preparation of hybrid materials within
mini- and micro-emulsions,71–73 as well as in the study of
sterically stabilized liposomes and other hairy particles when
trapped by macrophages within the body during endocytosis
processes.1

The aim of this work is to study numerically the confor-
mations and the forces that arise when a neutral spherical
brush is confined within a spherical cavity as a function of
the properties of the brush !length of the chains, grafting
density, etc." and the size of the cavity, as well as to develop
tools that can help easily predict the value of such forces and
pressure inside the cavity. In order to understand the confor-
mations and forces that arise in a spherical brush under iso-
tropic compression, the forces and pressures obtained from
Monte Carlo !MC" simulations are compared to two alterna-
tive approaches: SCF calculations and the Flory theory for
polymer solutions. The comparison will allow us to test and
discuss the performance of such alternative approaches.a"Electronic mail: jcerda@icp.uni-stuttgart.de.
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The rest of the paper is organized as follows. In Sec. II
we describe the MC simulations and the self-consistent
method including a brief discussion about the calculation of
the forces acting on the wall of the cavity. In Sec. III, we
present a detailed analysis of the density profiles, forces, and
the pressure inside the cavity using the three different ap-
proaches !MC, SCF, and Flory theory". Section IV concludes
with a brief discussion and outline of the main results.

II. NUMERICAL AND THEORETICAL APPROACHES

A. Monte Carlo method

In order to simulate the interaction between a spherical
brush confined inside a spherical cavity wall, we have used a
three-dimensional off-lattice MC method. We have generated
the brush by homogeneously distributing f polymer chains
grafted onto an impenetrable spherical surface of radius rc.
The cavity wall is also impenetrable with a variable radius R.
The polymer chain is represented by the pearl necklace
model74 containing N beads of diameter #. The distance be-
tween the centers of two consecutive beads in the chain is set
to 1.1#. The initial configuration of the self-avoiding poly-
mer is randomly generated being the first monomer perma-
nently anchored to the surface !it is never allowed to move".
A schematic representation of the system is shown in Fig. 1.

Monomers interact through a steric hard-core potential
of the form

Usteric = &
i,j=1

N$f

u!rij" , !1"

where u is a hard sphere potential

u!rij" = '0 for (ri − r j( % #

& for (ri − r j( ' # .) !2"

In what follows we use dimensionless units such that kT=1.
Different polymer configurations are generated by

changing the position of a randomly selected monomer. If
the monomer is located inside the chain !between the first
monomer, permanently anchored, and the last one" its posi-
tion changes by rotating an arbitrary angle between 0 and 2(
around the axis connecting the previous and following

monomers in the chain. Chain ends just perform random
wiggling motions. The proposed motion is accepted if the
excluded volume interaction is preserved $Eq. !2"%. A link-
cell method75 has been implemented in the algorithm to ef-
ficiently check all possible monomer overlaps. We define one
Monte Carlo step !MCS" as N$ f trials to perform monomer
moves.

Initially, the radius of the cavity wall is set to be larger
than the maximum extent of the brush to ensure that during
the equilibration process no interaction between the brush
and the cavity wall occurs. The free spherical brush is equili-
brated typically during 5$105 MCS. After this initial equili-
bration time, magnitudes of interest are recorded every 10
MCS. We now proceed to compress the brush. We reduce
slowly the radius of the cavity using steps of )R#10−3. After
each step we check if there are some monomers laying out of
the surface. If that is the case, we revert to the size of the
previous step and the system is run for 10 MCS before trying
to reduce the radius to another )R. The size of the external
cavity is smoothly reduced until we reach a radius size where
measurements should be performed !typically each time R
decreases by one unit". At this point a further equilibration of
6$105 MCS is performed before measurements for the cav-
ity of size R take place.

The force F that the system exerts to avoid compression
is computed as the change in the free energy F due to an
infinitesimal change in the cavity radius R,

F!R" * −
#F!R"

#R
. !3"

The free energy can be computed as F!R"=−ln Z!R" with a
partition function

Z!R" =+ ,
i=1

N$f

dri exp-− &
j=1

N$f

u!rij". . !4"

Due to the hard-core structure of the potential, see Eq. !2",
the partition function Z!R" is equal to the volume of the
region of the configuration space *!R" of all possible poly-
mer chain configurations compatible with the steric require-
ments. We now relate Z!R" to the probability of compression
of the system.16,76 Let PC!R" be the probability that the outer
surface radius can be reduced from R to R−)R. Due to the
steric interactions, compression is possible if no monomer
lies between distances R−)R and R from the center of the
cavity. The final configuration, after compression, corre-
sponds to an allowed configuration of *!R−)R". The com-
pression probability is hence the ratio of volumes PC!R"
=Z!R−)R" /Z!R" and, in the limit of small )R, the force can
be computed as

F!R" =
# ln Z!R"

#R
/

1
)R

ln
Z!R"

Z!R − )R"
=

− 1
)R

ln PC!R" . !5"

PC!R" is computed as the average value !typically we aver-
age over samples taken each 10 MCS over 6$105 MCS" of
the fraction of configurations for which compression would
be possible. After a good estimator of PC!R" has been ob-
tained, the system is slowly compressed until the cavity
reaches a size where new measurements should be per-

FIG. 1. Schematic representation of a spherical brush with an impenetrable
core of radius rc inside a spherical cavity of radius R.
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formed. The process is repeated until a desired minimum
value of the radius R is reached.

The monomer radial density + and the end-chain radial
density , are defined as usual,

+!r" =
n!r"

4(r2dr
, ,!r" =

nE!r"
4(r2dr

, !6"

n!r" $respectively nE!r"% being the number of monomers !re-
spectively end-chain monomers" located between distances r
and r+dr from the center of the sphere. The definitions are
such that the following normalization conditions hold:

+
0

&

dr+!r" = Nf , +
0

&

dr,!r" = N . !7"

B. Self-consistent field method

In order to compute the probability density function
!pdf" for polymer systems, it is customary to derive a
Schrödinger-like equation for the pdf Gn!h! ,h" for a single
chain.77,78 The use of this formalism is a valid approximation
for spatial scales much larger than the polymer blob size.
However, for encapsulated polymer brushes, and mainly at
moderate and high compressions, the spatial scale of the cav-
ity is comparable to the blob size. Thus, the use of the pre-
cedent formalism to compute the pdf becomes inadequate.
Instead, we compute the pdf of a polymer chain using di-
rectly the recurrence law for the pdf from which the
Schrödinger-like equation derives.78 We must be aware that
the use of the recurrence law still implies some approxima-
tions. It is assumed that on each monomer of the polymer
chain acts a potential only depends on the position of the
monomer in the system, U=U!r", therefore, bond correla-
tions are not taken into account. It is also assumed that the
potential is a function of the local monomer density U!+!r"",
ignoring particle density correlations. Finally, the properties
of the whole ensemble of chains are deduced from the pdf of
a single chain.

Under the above assumptions, the spherical cavity is
split in concentric shells of thickness dr and all monomers
inside a shell are assumed to be equivalent. A polymer chain
composed of N monomers is represented as a path of N seg-
ments of length #. Each segment is labeled by an index
i=1, . . . ,n associated with the spherical shell at which it be-
longs. The pdf associated with all possible paths composed
of n segments, being the first segment inside the shell h! and
the last one inside the shell h, is defined as

Gn!h!,h" * &A
e−&i=1

n U!i", !8"

in which &A stands for a sum over all the hypothetical
n-paths that join the shells h! and h. This function verifies
Gn!h! ,h"=Gn!h ,h!". Therefore, the pdf associated with a
path of n+1 segments may be written as

Gn+1!h!,h" = &A !e−&i=1
n U!i"e−U!n+1"" . !9"

Assuming U!n+1" to be independent of rest of the segments
in the chain and of the starting point of the sequence, the
precedent equation reads

Gn+1!h!,h" = -&
h"

DGn!h!,h"".e−U!h", !10"

where &D implies a sum over all the h" shells from which we
can get into shell h using a single segment; therefore, shells
h" and h are at a relative distance less or equal to #. The
above equation stands for the recurrence law needed to cal-
culate the chain pdf once the potential U!h" is given.

We have set the interaction potential U!i" to be propor-
tional to the monomer concentration in shell i, +!i",

U!i" = -+!i" , !11"

where w is the excluded volume parameter defined as77

- = 4(+
0

&

!1 − e−u!r""r2dr . !12"

For the interaction potential u!r" introduced in Eq. !2", we
obtain -=4(#3 /3.

The monomer concentration +!i" and the free-end-chain
concentration ,!i" are defined as

+!i" =
f

4(ri
2dr

eU!i"&n=0
n=N& j=irc

iR Gn!irc
,i"GN−n!i, j"

& j=irc

iR GN!irc
, j"

, !13"

,!i" =
f

4(ri
2dr

GN!irc
,i"

& j=irc

iR GN!irc
, j"

, !14"

where irc
and iR are the shell indices with radius equal to the

brush core surface and the cavity wall, respectively. The fac-
tor eU!i" in the monomer concentration is introduced to avoid
double counting of the interaction term e−U!i" at shell i that
comes from splitting the pdf into two terms, one that ends at
shell i and the other starting at the same shell.

The change in the free energy when we reduce the cavity
size .F!iR" is given by

.F!iR" = ln-*!iR"
*!&" . !15"

being

*!i" = f& j=irc

i
GN!irc

, j" . !16"

We have set the reference state as a system with a cavity wall
at a distance far enough so that no chain can reach this wall.
Therefore, the force to compress the brush, given a cavity
size R, is

F!R" = −
#!.F!R""

#R
. !17"

Given R, N, and f , an iterative process is used to obtain
the pdf and the density profiles. We have iterated the process
until self-consistency is reached. We set the condition for
self-consistency such that the sum of the squares of the dif-
ferences in the density profiles coming from two consecutive
iterative steps is less than 10−8.

The SCF method has the great advantage of being three
to four orders of magnitude less expensive in computer time
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than the MC method. In Sec. III we will show that SCF and
MC calculations give similar results for the density profiles
+!r" and ,!r" in the case of free polymer brushes. However,
SCF predictions for the cavity pressure worsen for highly
compressed systems.

C. The Flory theory for polymer solutions

In the Flory theory the osmotic pressure in a polymer
solution of volume V with a degree of polymerization N can
be written as

/!R" 0
− 1
VS

-ln!1 − v" + -1 −
1
N
.v + 1v2. , !18"

where v is the volume fraction of solute, VS=V!1−v" is the
molar volume of the solvent, and 1 is the Flory parameter.
We set 1=0, which is the condition of a dry brush. Under
this assumption, the contributions to the free energy come
only from the entropy associated with all possible configu-
rations of the system. If we apply this theory to our case,
the volume fraction is v=aNf /V, a= 4

3(#3 being the volume
of a single monomer. V is the total available cavity volume
between the inner wall, represented by the core of the col-
loidal particle where chains are grafted, and the cavity wall
V!R"=4( /3!R3−rc

3".
At variance with the original Flory treatment, the molar

volume of the solvent VS refers to the remaining space in the
system once we have subtracted the volume occupied by the
monomers; thus, it is no longer a constant value.

The force to compress the cavity will be proportional to
the area of the cavity wall and to the change in the osmotic
pressure ./, thus

F!R" 0 4(R2./!R" . !19"

The change in the osmotic pressure is calculated as ./!R"
=/!R"−/!nc", where /!R" is given by Eq. !18" and /!nc" is
the osmotic pressure for a noncompressed brush. We assume
/!nc"=/!R!", where R! is the radius of the cavity at which
F!R"→0 for the MC data. The method leaves in Eq. !19"
a free constant to be determined. In order to compare the
results from Flory theory with MC force profiles we have
determined the most suitable value of the constant
!/exp!13.3"" and this value has been used in all force com-
parisons.

III. RESULTS AND DISCUSSION

We have performed extensive numerical calculations for
free and encapsulated spherical polymer brushes and com-
puted the monomer and end-chain density profiles and the
compression forces for different values of the number of
chains f and the number of monomers per chain N. The core
radius of the colloidal particle where polymers are grafted is
taken to be rc=5# and is kept constant through all the simu-
lations. The diameter of the monomers is set to #=1. We
have taken polymer chain lengths in the range of N=30 to
N=70, and we have varied the number of grafted chains
from f =5 to f =75. The range of parameters !N , f" has been
chosen in order to obtain chain extents roughly of the same

order than the diameter of the core where curvature effects
are important. For the SCF method we have used a shell
thickness dr=0.1#.

A. Density profiles

We have first studied the monomer and end-chain den-
sity profiles +!r" and ,!r" for an unconstrained spherical
brush. We extend previous MC results32 and compare in
Figs. 2 and 3 the monomer and end-chain density profiles for
unconstrained polymer brushes obtained from our MC and
SCF calculations for different values of f and N. The density
oscillations observed at small r, close to the core of the col-
loidal particle, are originated due to wall effects of the im-
penetrable core. In all cases the profiles are roughly similar.
In particular, both methods agree very well in the case of the
end-chain density profile ,!r" for short chains in a densely
packed brush $see inset of Fig. 2!b"%. This is mainly due to
the fact that the chains are forced to be mostly fully stretched
out and density correlations not present in the SCF formal-
ism are not relevant. On the other hand, the results for the
monomer density profiles +!r" show systematic differences,
although small, between the MC and SCF calculations. Close
to the core of the colloidal brush, SCF results display density
profiles slightly smaller than those obtained via MC simula-
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FIG. 2. Comparison between the monomer density profiles +!r" for uncom-
pressed spherical brushes obtained with MC !"" and SCF !dashed lines"
calculations. Inset: chain-end density profiles. From top to bottom: !a"
N=30, f =25; !b" N=30, f =75; !c" N=50, f =75.
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tions. Also vice versa, in an intermediate region, the SCF
method gives densities slightly larger than in the MC simu-
lations. The same systematic behavior was found by Cos-
grove et al.80 when comparing MC and SCF density profiles
for flat brushes. Cosgrove attributed these differences to the
fact that MC simulations account explicitly for the excluded
volume effect, whereas SCF accounts only approximately for
this effect.

For a free spherical polymer brush Carignano and
Szleifer !CS" !Ref. 79" computed the monomer density pro-
file derived from a single-chain mean field theory. A com-
parison between the CS data and our results is also included
in Fig. 3. The better agreement of the CS predictions with
our MC simulations, in contrast to the SCF calculations, can
be understood in the sense that the CS formalism requires a
representative sample of chain configurations as input data to
solve the equations that we have generated using our MC
method.

B. Cavity pressure and force profiles

We have measured the force profile exerted by an encap-
sulated spherical polymer brush onto the external cavity wall
through the evaluation of the changes in the free energy due
to an infinitesimal change in the radius of the cavity. Within
the MC simulations, the force can be calculated by directly
measuring the compression probabilities $Eq. !5"%; whereas
in the SCF approach, once we have reached self-consistency,
we use the pdf in Eqs. !15"–!17".

It is of interest to check to which extent the Flory theory
known to be valid for concentrated polymer solutions81 with-
out chain-end effects can be applied in such spherically en-
capsulated polymer systems. That theory has the advantage
of being computationally inexpensive. Therefore the predic-
tions arising from Flory theory !see Sec. II C" will be com-
pared to the MC and SCF calculations. The comparison will
also serve to check whether the details of the system !spheri-
cal geometry and anchored chains" are relevant in the high
compression limit.

In Figs. 4–6 we present in log-log plots the force profile
F!R" versus the cavity size R computed for different values
of the polymer chain length N and number of grafted chains
f . In each figure we include the results coming from the MC
simulations, the predictions of the SCF theory, and results
derived from the application of the Flory theory. Figure 4
concentrates on the results derived for short polymer chains
!N=30", Fig. 5 for intermediate chain lengths !N=50", and
Fig. 6 for long polymers !N=70". In all the cases studied we
have used the same fitting constant to adjust the predictions
of the Flory theory $see Eq. !19"%, and we have taken, as a
reference state, a cavity size R! at which F!R!"→0 in the
MC simulations.

A direct comparison between SCF and MC force profiles
shows a rather good agreement for weakly compressed sys-
tems. However, systematic differences are observed for in-
termediate and high compression values. In the intermediate
region we found the SCF forces to be larger than the ones
derived from the MC simulations, whereas for high compres-
sions it is the MC force that becomes larger than the SCF
outcome.
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0.1

0.2

φ(
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MC CS SCF

N=30, f=25

N=50, f=50

FIG. 3. Comparison between the monomer density profile +!r" for free or
uncompressed spherical polymer brushes obtained from our MC simulations
!symbols" and SCF calculations !dashed lines" for different values of the
chain length N and number of grafted chains f . The results are compared to
the predictions of CS !Ref. 79" !continuous lines".
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FIG. 4. Semilog plot of the force profile of an encapsulated spherical poly-
mer brush vs the cavity size R for polymer chains of length N=30. MC
results are represented by filled circles, SCF data by dashed lines, and the
predictions coming from the Flory theory by crosses. Different figures stand
for different numbers of grafted chains f . From top to bottom: !a" f =25; !b"
f =50; !c" f =75.
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The mismatches observed between the SCF and MC re-
sults are due to a twofold effect. For small cavity sizes or
highly compressed systems, the assumption in the SCF
model of a linear dependence of the mean field potential with
the monomer density $see Eq. !11"% breaks down. In fact,
under this assumption, the SCF formalism allows a cavity
size smaller than the volume occupied by the polymers with-
out requiring an infinite force. Furthermore, for intermediate
compression values, the larger forces obtained with the SCF
formalism are originated in an overestimation of the mono-
mer interactions. The SCF method does not include the effect
of monomer correlations, thus it allows higher average den-
sities in the system than the ones found in the MC simula-
tions. As a consequence, stronger repulsions between the
polymers take place and a higher force is required to com-
press the brush.

The predictions of the Flory theory are found remark-
ably, despite its simplicity, to be in very good agreement with
the results of the MC simulations in the intermediate and
high compression regimes. However, the force is overesti-
mated for weakly compressed systems. This result is easily
explained since the Flory theory was formerly developed for
free polymer chains. As the cavity size grows, the difference
between a system of grafted chains and a polymer solution

becomes evident and, as it is expected, the interaction of the
grafted chains with the outer surface is much weaker than the
one coming from a polymer solution. It is worth to notice
that the MC data can be fitted remarkably well with the Flory
theory for intermediate and high compression values, and
with the SCF formalism for weakly compressed systems.

We have analyzed the relationship between the monomer
volume fraction v and the pressure exerted on the cavity wall
P defined as the force to compress the system divided by the
area of the cavity. The results for the MC and SCF calcula-
tions are shown in log-log plots in Figs. 7 and 8, respectively.
In both cases, we find a complex behavior of the monomer
volume fraction with the cavity pressure for weakly com-
pressed systems that depends on the different values of the
polymer chain length N and number of grafted chains f . But,
for increasing values of the cavity pressure v and P follow a
power law of the form P#v! independent of N and f .
The best fit to the numerical data gives a slope of
!=2.73"0.04 for the MC simulations and !=2.15"0.05
for the SCF results. The larger exponent obtained via MC is
related to the monomer density correlation effects not ac-
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FIG. 6. Same as Fig. 4 for the single case of long polymer brushes with
N=70 and f =25.
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FIG. 7. Log-log plot of the system pressure P vs the monomer volume
fraction v obtained from MC simulations for different values of the chain
length N and number of grafted chains f . A solid line of slope 2.73 is
included to guide the eye.
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FIG. 5. Same as Fig. 4 for polymer chains of length N=50. From top to
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counted for in SCF method. One should remark that in both
SCF and MC methods, as predicted by polymer theory, at
large monomer concentrations all thermodynamic properties
reach values that are independent of the degree of polymer-
ization.

It is worth to comment the striking similarity between
the exponent obtained via SCF calculations and the des
Cloiseaux power law !!=9 /4" found in semidilute polymer
solutions in the limit of very long chains N→&.78 In our
systems the chain lengths are quite modest, therefore finite
effects are expected to be important. Thus, the coincidence
between such exponents is probably fortuitous. Similar acci-
dental coincidences have been observed previously to occur
when comparing numerical results and scaling law predic-
tions used out of the expected regime of validity, as for in-
stance in the study of homopolymer adsorption onto a flat
wall.82,83

Differences between force profiles derived from SCF
formalisms and those obtained from other methods that ac-
count for chain interdigitation and correlations between the
nearest-neighboring bonds are also referenced in several
works. For instance, Ruckenstein–Li84 compared the experi-
mental force profile of two interacting crossed cylinders
bearing grafted polymer chains, with the numerical data ob-
tained with a generator matrix formalism and from SCF
methods. Those authors found the matrix formalism to pro-
vide a better agreement with the experimental data than the
SCF results. In most cases, the force profiles derived with the
matrix formalism and the SCF method are rather similar to
the ones we found comparing the MC simulations and the
SCF calculation. This reinforces our presumption that inter-
digitation and monomer correlations are responsible for the
observed differences between the MC and SCF data. Addi-
tionally, the fact that mean field calculations overestimate the
segment-segment interactions in the evaluation of the free
energy, as mentioned above, has already been noticed by Lin
and Gast.85

IV. SUMMARY AND CONCLUDING REMARKS

In this paper we have studied the behavior of an encap-
sulated spherical brush inside a spherical cavity. We have
measured the monomer density profile and the cavity forces
through extensive three-dimensional off-lattice Monte Carlo
simulations and using a SCF formalism. In the latter case, we
have used directly the pdf recurrence law for the propagator
GN!r ,r!", avoiding the length scale approximation involved
in SCF methods that uses Schrödinger-like equations. Alter-
natively, we have used a theoretical description based on the
Flory theory for polymer solutions to compute the pressure
inside the cavity.

A comparison of the predicted forces exerted by the
polymer brush onto the cavity surface among the different
methods reveals the following. !i" For weakly compressed
systems, MC and SCF data show a rather good agreement.
However, the force is overestimated in the Flory theory. This
difference arises since the Flory theory was developed for
free polymer chains and not for polymer brushes; thus, its
prediction is not physically relevant when the cavity wall is
located at a distance larger than the typical brush extension.
!ii" For intermediate and highly compressed systems the MC
data agree reasonably well with the results derived from the
Flory theory. In the intermediate regime, it is the SCF for-
malism that overestimates the force. This behavior can be
easily explained since the SCF method does not account for
monomer correlations, allowing higher monomer densities,
and thus higher forces are required to compress the brush.
On the other hand, for highly compressed systems, the linear
dependence of the mean field potential with the monomer
density turns out to be inadequate !the repulsion between
monomers allows a volume reduction in the system beyond
the own excluded volume of the monomers at a finite energy
cost" leading to lower forces than the ones derived from MC
simulations.

We have found a power law relationship between the
monomer volume fraction and the cavity pressure P#v!.
SCF data give a slope of !=2.15. On the other hand, the MC
simulations provide a larger exponent !=2.73 that is origi-
nated in the monomer correlations not present in the previous
models.

The present study of hairy particles trapped inside a
confining shell contributes to improve our physical insight
about how encapsulated spherical brushes behave. Further-
more it can be of relevance to get a better understanding
of particle-filled nanocomposites, the synthesis of hairy
particles in mini- and microemulsions, as well as endocytosis
processes of drug delivering particles. We expect these
results will encourage further theoretical and experi-
mental studies toward the understanding of these confined
systems.
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