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Abstract. A new algorithm recently proposed by Pomeau and Herrmann for the micro- 
canonical simulation of the Ising model is very efficiently implemented on a DAP computer. 
Its dynamical properties are studied and compared with those of the standard Metropolis 
algorithm. 

Numerical simulations are now, more than ever before, a valuable tool for studying 
the properties of mathematical models in physics (for reviews see Binder (1979, 1984)). 
As computers have become more and more powerful, the kind of problems being 
solved with their help have become more and more difficult and time consuming, 
demanding in turn more powerful algorithms. In many aspects of today’s numerical 
studies of phase transitions we are interested in critical properties. In particular, one 
of the most important methods for obtaining critical exponents in lattice models is to 
use the theory of finite-size scaling (see Barber 1983). This method involves computing 
magnitudes at, or very near to, the critical point of the infinite system (indeed the only 
one for which a critical point exists) for systems with different finite sizes and extrapolat- 
ing the results to the infinite system. Due to the very large nature of the phase space 
available even for very small systems, Monte Carlo techniques are used to obtain 
approximate values. This is a formidable task. It is well known that when a critical 
point is approached there is a dramatic increase in fluctuations (implying that more 
measurements are needed in order to get a given accuracy) and a critical slowing down 
(implying that more updates are needed in order to get statistically independent 
configurations). Very fast algorithms to do the simulations are required to overcome 
these problems (Goodman and Sokal (1986), Swendsen and Wang (1987); see Sokal 
(1988) for a recent review). The simulations are usually carried in the canonical 
ensemble where the Metropolis algorithm is used. Of course, it is not compulsory to 
use the canonical ensemble. The equivalence of the different collectivities in the 
thermodynamical limit makes it possible to extract useful information about the 
equilibrium properties from other ensembles (Creutz 1983). 

A deterministic algorithm has been proposed by Pomeau (1984) as an example of 
a cellular automaton. It has been recently claimed by Herrmann (1986) that the 
algorithm is relevant in the simulation of the microcanonical ensemble and could offer 
an alternative to the more conventional Metropolis algorithm with a spectacular gain 
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in speed. The algorithm goes as follows. Consider the Ising model with nearest- 
neighbour interactions in a regular lattice in d dimensions, then divide the lattice in 
two sublattices such that all the neighbours of the spins in one of the sublattices belong 
to the other sublattice. Update all the spins in one of the sublattices at once. A 
particular spin is flipped if and only if it has the same number of up and down 
neighbours. This is equivalent to saying that only flips that conserve the energy are 
accepted. Since this dynamics is deterministic, no random numbers are needed for 
the update (random numbers are only needed for the initialisation of the system). 
Moreover, it can be easily implemented by the use of only logical operations. Let ai 
denote a logical variable taking the values 0, 1 representing the spin variable Si (taking 
the values +1,  - 1 )  in site i of a square lattice. If ail, ai2, ui3 and aid are the four 
neighbours of al, the above rule for updating ul can be explicitly implemented by using 

a: = a10{ [ (~ i ,0~ i2 )  A (aI,O~,J1 v A (~,20~r4)1> ( 1 )  

(where A ,  v and 0 are the logical functions ‘and’, ‘or’ and ‘exclusive or’, and a: is 
the new value of the spin variable at site i ) .  This expression can be easily implemented 
using the (almost) standard Fortran bitwise logical operations, and has been timed as 
670 million spin updates per second on a CRAY X M P  (Herrmann 1986), which is about 
three times faster than any previous canonical simulation (Reddaway et a1 (1983,  
obtained using a single instruction multiple data DAP computer). If DAP computers 
have proved so successful in the simulation of the Metropolis algorithm, it is then 
natural to program this new microcanonical algorithm on the DAP. However, simply 
implementing this program in DAPFORTRAN (a parallel extension of FORTRAN) is not 
very efficient because the compiler has to translate the v operation into the machine 
code set of instructions (known as APAL) which does not possess it and even the A 

and 0 operations require some additional overheads in APAL. The most efficient use 
of the DAP is obtained by programming the algorithm using three bits sums which is 
the primary instruction in APAL. It is easy to write ( 1 )  using only three bits sums. If 
L 1 ,  L 2 ,  L, are three logical type variables, let us denote by Q(L,, L z ,  L,)  and 
C ( L , ,  L2,  L,) respectively the least significant bit and the most significant bit of the 
sum L1 + L2 + L3 . An algorithm replacing equation ( 1 )  is 

(2) 

(6 denotes logical ‘not’). This can be programmed using only three machine code 
instructions (plus the corresponding overheads). Another advantage of using the DAP 

is that there is a very efficient and natural mapping of a square system onto the DAP 

memory. The DAP memory consists of ‘planes’ of 64x64 bits such that every bit is 
connected to its four neighbours. To simulate, say, a 256x256 system we use 16 of 
these logical planes arranged in such a way that the number of operations necessary 
to get the neighbours of a given spin is minimised. Periodic boundary conditions are 
obtained ‘for free’ in the hardware. Equation (2) can then be completely programmed 
using about seven one-cycle machine code instructions; the exact number depends on 
the size of the system. The bigger the system, the smaller the number of instructions, 
up to a limit of a system size of 1024x 1024 beyond which (and due to the specific 
way of addressing memory in the APAL set of instructions) one loses efficiency. This 
is to be compared with the 22 FORTRAN statements necessary to implement ( 1 )  (see 
Herrmann (1986) for a listing of the code). The maximum speed obtained on the DAP 
is then 2.2 x lo9 spin updates per second for the 1024 x 1024 system and 1.6 x lo9 spin 
updates per second for systems 128 x 128 and smaller. 

a: = sat, Q(al,, ai2, a,,), C(C(a,, 3 at2, Ui3L Q ( ~ l l  9 a,,, U13L %)I 
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Let me discuss now some of the dynamical properties of this new algorithm. The 
first thing is clear is that it is not ergodic (this is clearly admitted in the papers by 
Pomeau and Herrmann). There are certain configurations that repeat themselves after 
a limited small number of updates (see Hermann et a1 1987). The point is whether 
for simulations of large enough systems, with sufficiently random initial configurations 
and near the critical point, the non-ergodicity is irrelevant, i.e. the part of the phase 
space that is not sampled by the algorithm is irrelevant. To study these and other 
dynamical properties, I have monitored the magnetisation 

N 

M ( t )  = c S j ( t ) .  (3) 
i = l  

Figures 1 and 2 show for the critical point the time evolution of the magnetisation for 
different sizes of the system for both this microcanonical and the standard parallel 
implementation of the Metropolis algorithm for the canonical simulation. The choice 
of the initial configuration for the microcanonical simulation deserves a special com- 
ment. In the microcanonical ensemble, the energy, defined by the standard relation 

E = - J  C SjSj 
N N  

(4) 

is a constant. I have then generated the initial configuration as follows: once a particular 
value of the energy, E, has been chosen I generate a completely random configuration 
with a density p such that the expected value of the energy ( E ) = J N ( 8 p ( l  - p ) - 2 )  
( N  is the number of spins) is equal to E. A final tuning is obtained by randomly 
flipping spins until the energy has the desired value E. The qualitative system behaviour, 
however, seems to depend on the choice of the initial configuration as is clear from 
figures l(b, c )  and l(e,f) .  

Another important thing to notice is that even for system sizes as large as 32x32  
there are periodicities due to the non-ergodical nature of the algorithm. Only for 
system sizes beyond 64 x 64 are there no evident signs of periodicity and it would seem 
then that the algorithm can be safely used to compute magnitudes in the system. This 
appears to be true. However, it is obvious from figures 1 and 2 that even though the 
magnetisation fluctuations have a similar appearance in both algorithms for systems 
of 128 x 128 spins, the timescales are very different and the microcanonical algorithm 
seems to need an order of magnitude more updates than the canonical algorithm in 
order to get the same qualitative results. The conclusion is that the microcanonical 
algorithm has a much larger relaxation time than the canonical algorithm. 

This statement, which is qualitatively observed in figures 1 and 2, can be put in a 
more quantitative basis by studying the behaviour of the spin-spin correlation function: 

( 5 )  r ( t )  = ( 2  r = l  si(o)si(t)). 

Figures 3 and 4 show the evolution of this magnitude for the microcanonical 
simulation and system sizes 64 x 64 and 128 x 128 respectively. It is remarkable that 
the timescales for the decay of this function are comparable for both systems, indicating 
that the non-ergodicity of the algorithm is still causing trouble in the 64 x 64 system. 
The 'decorrelation time', T (or time necessary for the system to forget previous 
configurations), can be obtained by fitting r( t )  to an exponential decay 

r( t )  = ro e-"r. (6) 
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Figure 1. Time evolution of the magnetisation in the microcanonical algorithm described 
in the text for different values of the system size: ( a )  L =  16; ( b ) ,  (c )  L = 3 2 ;  ( d )  L=64;  
(e ) ,  (f) L = 128. ( b )  and ( c )  differ only in the seed used in the random number to generate 
the initial configuration. This is also the case for ( e )  and (f). 

A least-squares fit to the data in figure 4 yields T , , , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  = 3.3 x lo5 while a 
similar analysis for the standard Metropolis algorithm for the simulation of the 
canonical ensemble yields T~~~~~~~~~ = 2.6 x lo4, both for a 128 x 128 system, confirming 
again the fact that the microcanonical simulation is an order of magnitude slower 
when generating an independent configuration. 

In conclusion, it appears that this new algorithm for the simulation of the Ising 
model has to be taken with great care. There are clear problems with ergodicity for 
systems near the critical point even for system sizes as large as 64x64. For larger 
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Figure 2. Time evolution of the magnetisation in the standard parallel version of the 
Metropolis algorithm for different system sizes: ( a )  L =  16; ( b )  L=32; ( c )  L=64; ( d )  
L = 128. 
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Figure 3. Time evolution of the spin-spin correlation function for the microcanonical 
algorithm for a square system of 64 x 64 spins. The error bars arise from the statistics of 
2000 independent runs with different initial conditions. 
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Figure 4. As figure 3 but for the 128 x 128 system, averaged over 500 independent runs. 

systems, where we have not found any anomalous results due to non-ergodicity, the 
number of configurations necessary to generate an independent one is an order of 
magnitude larger than necessary in the conventional Metropolis algorithm. Of course, 
when considered as a cellular automaton model, the algorithm is interesting on its own. 
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