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We give results from an accurate determination of the partition function of the three-dimensional Is-
ing model on lattices of size up to 103. We compute the two complex zeros of Z closest to the real tem-
perature axis. From a finite-size-scaling analysis of these, we get the estimates v=0.6295(10) for the
correlation-length exponent and ¢=>52.2(7) for the angle between the first two zeros and the real

u=e ~* axis.
PACS numbers: 75.10.Hk, 75.40.Cx

We have recently developed!~® a new technique that
directly measures the partition function of a statistical-
mechanical system by numerical methods. In the
present paper, we give results for some critical properties
of the three-dimensional Ising model by accurately
measuring its partition function on cubic lattices (with
periodic boundary conditions) of size up to 103 using our
method. The details of our numerical simulation and
analysis will be published elsewhere.* Here we will de-
scribe our method, give results for the two zeros closest
to the critical point in the u=e ~* plane and, from
these, determine the correlation-length exponent v and
the angle ¢ between the first two zeros and the real
u=e * axis.

The energy of a lattice configuration is

E=L 3 1-5(s(1, s==1. (1)
40

Here the sum is over all nearest-neighbor pairs of lattice

sites. E is integer valued, ranging from zero for the or-

dered state to a number of the order of the volume for

the maximally frustrated state. The partition function is

E,
Zw)=Y P(E)uE, (2)
E=0
where P(E) is the number of states of the system at en-
ergy E, u=e ~* and E,, =dL%2.
To make our simulation fast, we found it useful to up-
date several independent lattices simultaneously. Our

method to compute Z went as follows: We divided up
the range of E values into sets containing four consecu-
tive energies each. The last E value of one set was the
first of the next set. Consider one of the sets. To initial-
ize a lattice into that energy set, it was started in a disor-
dered or ordered configuration and randomly chosen
spins were flipped, the flip being accepted if the energy
went in the desired direction. The independent lattices
to be processed together were initialized independently.
Once all the lattices were initialized, they were updat-
ed by flipping spins at sites chosen randomly (but the
same site on all the lattices in a single trial flip). If the
spin flip kept a lattice within the range of allowed energy
values, it was accepted. These spin-flip attempts were
repeated a large number of times, and the number of
times the lattice energy had a given E value was record-
ed. This experiment was repeated over all sets. The rel-
ative probability for the system to be in one (E) or the
other (E') energy state in the set is an unbiased estima-

tor of the relative number of states P(E)/P(E') at these
energy values. From the overlap in E between sets, one
gets the complete partition function, apart from an ir-
relevant normalization factor.

The choice of four energy values in a set is to allow the

system to reach any local spin configuration from any
other. One could have picked more than four energies in
a set. However, we believe that there are problems with
ergodicity if one choses fewer than four.>

If one makes NV independent measurements in set i, the
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TABLE I. The two zeros of the partition function closest to the infinite-volume critical point
uc as a function of lattice size L. The results shown without errors are exact (the partition

function is known exactly).

Second zero

L Re(u) Im(u) Re(u) Im(u)

2 0.292893. .. 0.292893. .. 0 1

3 0.365053. .. 0.141742. .. 0.29311... 0.23961. ..
4 0.384283. .. 0.087739... 0.34449. .. 0.14330...
5 0.392787(5) 0.060978(5) 0.36579(5) 0.09833(5)
6 0.397563(5) 0.045411(5) 0.37757(5) 0.07277(5)
8 0.402718(5) 0.028596(5) 0.39011(5) 0.04535(5)
10 0.405405(5) 0.019996(5) 0.396 52(5) 0.03172(5)

number Ng of times the system has energy E is distri-
buted binomially and therefore has a known variance.
The variance of pr =Ng/N is given by the binomial for-
mula A2, =N ~'pg(1 —pg). This observation provides a
method of determining the number of spin-flip attempts
ny necessary to generate an independent configuration.
This can be done by increasing the number of spin-flip
attempts between measurements until the measured vari-
ance settles down to the theoretical value. For all the
lattices we simulated, the values of n, for each energy
were first determined in this way. Starting from the ini-
tialized lattices, for each set, we performed about
10000n, thermalizing spin-flip trials before beginning
measurements. In the measuring process, successive
measurements were separated by n, steps. Note that
when the energy is very small (system highly ordered),
ny is very large. This is inevitable in a local microcanon-
ical update method such as ours. However, this is ir-
relevant to our results because these energy values have
very little weight in the partition function as they have
very little phase space, especially near §=p.. Typical
values we used for ny ranged from 5 to 30.

Since the overall scale of Z is irrelevant, once the ra-
tios Ng/Ng. are known for all i, then defining the (arbi-
trary) value of P(E) at some fixed E, the entire parti-
tion function is determined. The error Ap) in P(E)
can be obtained in two ways: (a) by propagating the bi-
nomial errors and (b) by repeating the measurement of
the P(E)s by using different values for the ratios
Ng/Ng. with Gaussian spread and computing the error
from the scatter in the data. For all E values and lattice
sizes we studied, these two error estimates were compati-
ble. This is convincing evidence that not only were our
measurements independent but that our errors for P(E)
are reliable.

We generated at least 2% 10° independent trial flips in
each set of energy values for each of the lattice sizes
L=4 5,6, 8, and 10 that we simulated. The zeros of
the partition function close to the real axis were comput-
ed using a Newton-Raphson interpolation in quadrupole
precision. To estimate the error in these zeros, we gen-
erated 10 estimates of Z by generating P(E) values with
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Gaussian spread Apg). The standard deviation in a
given zero estimated from these Z’s is our error estimate
for that zero.

It is known® that for a sufficiently large L, the zero
u1(L) closest to the real positive u axis in the complex u
plane obeys

u (L) =u.+AL ~1+0(L ~?)], 0>0, (3)

where” u, =0.412047(10) is the infinite-volume critical
point. Table I gives our results for the two zeros closest
to the real u axis. To obtain v, we first fit our data for
u,(L) to the form

[ (L) —u, | =a L ~V+a,L ~*® 4)

The results of this fit for L =1(2,3,4,5),
(4,5,6,8), and (5,6,8,10) are shown in Table II.
Another way to get v is to first fit the closest zero to

(L) —u, | =a,L ~/"D) (5)

(3,4,5,6),

for successive values of L and then use the v(L) values to
fit to

v(L) =v+4asl %, (6)
The v(L) and v values from fits to Eqgs. (5) and (6)

TABLE II. Results for the estimate of ¢ and v. The fits
shown alongside L =2,3,4,5 in column 5 are for lattice sizes
L=(2,3,4,5), (3,4,5,6), (4,5,6,8), and (5,6,8,10), respective-
ly. The fits shown alongside L =2,3,4,5 in column 4 are for
lattice sizes (2,3,4,5,6,8,10), (3.4,5,6,8,10), (4,5,6,8,10), and
(5,6,8,10), respectively.

v
From Eq. (6) From Eq. (4)

L ¢ From Eq. (5)
2 675 0.62924(35) 0.630(1)
3 53.7... 0.54055... 0.62841(52) 0.629(2)
4 544... 0.59429... 0.6282(10) 0.629(3)
5  54.2(1) 0.61300(14)  0.6285(20) 0.628(2)
6 53.8(1) 0.62043(30)
8 53.0(1) 0.62492(28)
10 52.8(2) 0.62684(52)
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are also given in Table II. We use two successive L
values to estimate v(L) from Eq. (5) and then use the
v(L) values to estimate v from Eq. (6).

This last fit was made by two methods: (a) a least-
squares fit using a simplex method, and (b) keeping as
fixed, and making a linear fit to a constant plus a4L s,
as was then varied to obtain a maximum value for the
regression coefficient. Both methods agree perfectly.
The errors were computed as the scatter in the fits gen-
erated by using 100 initial data with Gaussian spread.
The fits to Eq. (6) were repeated by removing successive-
ly the L =2 data, L =3, etc., always obtaining a con-
sistent value for v (although the errors increase). When
making this fit of column 3 of Table II to Eq. (6), it is
not clear what L values to use for the entries in column 3
because the data there were obtained from two succes-
sive L values (L,L'). A compromise (which probably
represents the best choice) is to use (L+L')/2 (and
this is the fit shown in column 4 of Table II) which
gives v=0.62924(35). Using instead L one gets
v=0.63115(42) and using L' one gets v=0.62807(36).
The average of these three values is v=0.62949. From
the fact that all the fits represented in columns 4 and 5
of Table II agree within errors, we conclude that we are
already in the regime of lattice sizes values that extrapo-
lates smoothly to L =oo, as far as estimates of v are con-
cerned. We should therefore be able to estimate v reli-
ably. From similar considerations, we decided that our
data were not accurate enough to estimate w [Eq. (3)].
In principle, the second zero should also scale with L as
L =", Although the v values obtained this way are con-
sistent with those from the first zero, they are not accu-
rate enough to be competitive.

Our final estimate of v is 0.6295(10), where the cen-
tral value is defined as the average of the values obtained
when fitting Eq. (6) with different interpretations of L as
explained before, and to be conservative we have multi-
plied by three the actual error of this fit. This is also
meant to account for the smallness of the L values used
in the analysis and the possible occurrence of correlation
in the data.

We have also analyzed our data using the extrapola-
tion techniques discussed by Barber.® In particular, ex-
trapolating the v(L) values in column 3 of Table II by
the alternated € algorithm gives v=0.6299 in perfect
agreement with the value obtained above.

In Ref. 6 it was shown that as L — oo, the angle ¢ that
the tangent to the line of zeros at u. makes with the real
u axis is related to the specific-heat exponent a, and the
ratio A +/A - of the specific-heat singularity amplitude
above (small B) and below (large B) the critical temper-
ature. However, it has recently been shown that the for-
mula derived in Ref. 6 is valid only for the high-index
zeros.” We are unable to measure high-index zeros with
accuracy sufficient to use the results of Ref. 6 (for details
of how we decide the error on the zeros, see Ref. 1).

However, we can measure the angle (which we shall also
call ¢), between the first two zeros and the real u axis.
These angles for various lattice sizes are also given in
Table II. One could estimate the thermodynamic limit
of these angles by extrapolating the data to L — oo. Us-
ing a linear fit of the last four numbers in column 2 of
Table II and extrapolating to L =oo gives the estimate
$=51.5°. However, strictly speaking, the extrapolation
function is unknown and the errors on our angles are big.
We therefore estimate ¢ as the average of our angle
#(10) for L =10 and the value ¢. This gives ¢ =52.2(7)
degrees. The error we estimate to be 0.5[¢p(10) — ¢l
Our result for ¢ is quite different from that of an earlier
study by Marinari.'® However, the accuracy of the mea-
surement of ¢ in Ref. 10 was a factor of about 50 poorer
than ours.

Using the relationship between a and A+/A4 - from
Ref. 6 and assuming the validity of hyperscaling, one
would get A44+/A-=0.31(6). This also disagrees with
the experimental value (0.36 to 0.63) for this ratio for
the reason stated above that the formula in Ref. 6 is val-
id only for large-index zeros.

The behavior of Z near the antiferromagnetic transi-
tion is obtained already from the zeros in Table I.
Indeed, it is easy to see that in arbitrary dimensions, on
lattices of size L¢ with L even and with periodic bound-
ary conditions, P(E)=P(E,, —E). This gives [see Eq.
)1

Zw)=ut"z ). @))

Hence, the line of zeros representing the antiferromag-
netic phase transition is obtained from those for the fer-
romagnetic by the replacement u— u ~!. This also
shows that the value of v in the two cases is the same.
Another way of seeing this is to note that for any
configuration at positive B with total action §
=3, .SiSi+y there is another with action —S§ which has
the same weight in the partition function of the antifer-
romagnet (at —pB). This antiferromagnetic configu-
ration is obtained in any dimension from the ferromag-
netic configuration by making a checkerboard pattern
(even-odd sites) and by the change of variables s — —s
on the even or odd sites.

We are very encouraged to have managed to compute
v to an accuracy comparable to the best series expansion
and extrapolation techniques.!! We are currently ex-
tending our analysis to larger lattices to measure correla-
tions and the magnetic susceptibility from which we hope
to extract other exponents. The partition functions we
have computed are available on request.
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