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mine when the dynamics of a set of interacting agents that
can choose among several options (political vote, opinion,
cultural features, and so on) lead to a consensus in one of
those options, or when a state with several coexisting social
options prevails. Many researchers seek to identify the mech-
anisms that produce the latter, called a polarized state, in the
face of general convergent dynamics. The problem of spa-
tially distributed agents, for example, shares many charac-
teristics with the problem of domain growth in
phase-transition kinetics:7 consensus emerges when a single
spatial domain grows to occupy the entire system, whereas
polarization corresponds to a situation in which the system
isn’t ordered and different spatial domains compete.

In this article, we consider stochastic dynamic models stud-
ied via computer simulation. We’ll review some basic results
for the voter model,8 which is probably the simplest model of
collective behavior. Specifically, we’ll focus on the dynamical
effect of who interacts with whom—that is, the consequences
of different interaction networks. We’ll also consider R. Ax-
elrod’s model9 for the dissemination of culture.

The Voter Model
The voter model8,10–16 is defined by a set of “voters” who
have two opinions or spins si = ±1 at a network’s nodes. The
elementary dynamical step consists of randomly choosing a
node and assigning it the opinion or spin value of one of its
nearest neighbors, also chosen at random. This opinion-
formation mechanism reflects the agents’ complete lack of
self-confidence and thus could be appropriate for describ-
ing processes of opinion formation in certain groups in
which imitation is prevalent (such as groups of teenagers).
The dynamical rule implemented here corresponds to a node
update. An alternative dynamic is link update, in which the

elementary dynamical step consists of randomly choosing a
pair of nearest-neighbor spins—a link—and randomly as-
signing the same value to both of them if they have differ-
ent values (leaving them unchanged otherwise). These two
updating rules are equivalent in a regular lattice, but they
differ in complex networks in which different nodes have
different numbers of nearest neighbors.14

The voter model dynamics has two absorbing states (the
states in which the system is trapped once they are reached).
The absorbing states here correspond to situations in which
all spins converge to the si = 1 or si = –1 consensus states. The
ordering dynamics here—which are stochastic and driven by
interfacial noise—differ from a Glauber kinetic7 Ising model’s
ordering dynamics, in which surface-tension minimization
drives the dynamics. A standard parameter for describing the
ordering process12,13 is the average of the interface density �,
defined as the density of links connecting sites with different
spin values. In a disordered configuration with randomly dis-
tributed spins, � � 1/2; for a completely ordered system, � �
0. In regular lattices of dimensionality d � 2, the system is or-
dered, meaning that in the large system’s limit there is a coars-
ening process with unbounded growth of one of the
absorbing state’s spatial domains: in other words, consensus
is reached. The asymptotic approach to the ordered state is
characterized in d = 1 by a power law ��� ~ t–1/2, whereas for
the critical dimension d = 2, logarithmic decay ��� ~
(lnt)–1.10,12 Here, the average ��� is an ensemble average.

In regular lattices with d > 2, as well as in small-world net-
works17 and scale-free Barabasi-Albert networks,18 the voter
dynamics don’t order the system in a large system’s ther-
modynamic limit.11,13,14 Starting from a random initial con-
dition and after an initial transient, the system falls into a
partially ordered metastable state. In the initial transient of
a given process realization, � initially decreases, indicating
a partial ordering of the system, but after this initial tran-
sient, � fluctuates randomly around an average plateau
value. In a finite system, the metastable state has a finite life-
time: a finite-sized fluctuation takes the system from the
metastable state to one of the two ordered absorbing states.
In this process, the fluctuation orders the system, and �
changes from its metastable plateau value to � = 0 (see Fig-
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ure 1). The metastable state’s lifetime � (for a regular lat-
tice11 in d = 3 and also for a small-world network13) scales
linearly with the system size N, � ~ N; researchers have
found a scaling � ~ N 0.88 for the voter model in the scale-free
Barabasi-Albert network.14 The fact that a large system isn’t
ordered in a small-world or scale-free network seems coun-
terintuitive: we could argue that long-distance links (small
world) or nodes with many links (hubs in a scale-free net-
work) should be instrumental in ordering the system. Con-
versely, we could argue that what we’ve observed
corresponds to a network of large dimensionality: these
complex networks have an effective infinite dimension be-

cause the average path length between two nodes grows log-
arithmically (or slower) with system size.

To understand the role of dimensionality and degree dis-
tribution—that is, the probability for a node to have k links
(degrees)—let’s examine the voter dynamics in the struc-
tured scale-free (SSF) network.19 SSF networks have a de-
gree distribution P(k) ~ k–3, but they’re effectively
one-dimensional: the average path length scales linearly with
system size L ~ N. The simulation results in Figure 2 indi-
cate that the voter model’s dynamics in an SSF network and
a regular d = 1 network are essentially the same: the system
is ordered with the average interface density decreasing with
a power law (that has a characteristic exponent 1/2). This
identical behavior for two different networks identifies di-
mensionality, not degree distribution, as the relevant para-
meter for classifying different classes of the voter model’s
ordering dynamics in complex networks.

We can also study the voter model in other complex net-
works of dimension d > 1 characterized by a parameter p mea-
suring the network’s disorder. This parameter is the one
originally used to characterize a small-world network,17 vary-
ing continuously from p = 0 (regular network) to p = 1 (ran-
dom network). Network disorder decreases the metastable
disordered states’ lifetimes; likewise, these states’ lifetimes
decrease when the networks have nodes with many links.16

The Axelrod Model
Axelrod9 first addressed the issue of cultural diversity by ask-
ing the following question: if people tend to become more
alike in their beliefs, attitudes, and behavior when they inter-
act, why don’t all differences eventually disappear? To answer
this question, he proposed a model for exploring mechanisms
of competition between globalization (consensus) and coex-
istence of several cultural options (polarization). The model’s
basic premise is that the more similar an actor is to a neigh-
bor, the more likely the actor will adopt one of the neighbor’s
traits. In addition to treating culture as multidimensional (not
binary), the model’s novelty is that its dynamics take into ac-
count the interactions among different cultural features. The
model is defined by considering N agents as an interaction’s
network nodes. The state of agent i is a vector of F compo-
nents (cultural features; �i1, �i2, …, �iF). Each �if is one of the
q integer values (cultural traits; 1, …, q) initially assigned in-
dependently and with equal probability 1/q. The time-dis-
crete dynamics iterates the following steps:

1. Select at random a pair of sites of the network con-
nected by a link (i, j).
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Figure 1. Interface density evolution. For an individual
realization in a scale-free Albert-Barabasi network with N =
10,000 nodes and average connectivity <k> = 8, we see an
eventual sharp drop, which is caused by a finite-sized
fluctuation.
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Figure 2. Voter model. Mean interface density evolution in a
regular d = 1 network and in a structured scale-free (SSF)
network are essentially the same. The continuous line
indicates a power law decay with exponent –1/2.
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2. Calculate the overlap (number of shared features �ik =
�jk) lij.

3. If 0 < lij < F, the link is said to be active, and sites i and j
interact with probability lij/F (similarity rule). In case
of interaction, choose g randomly such that �ig � �jg and
set �ig = �jg.

The Axelrod model has qF equivalent cultural options, and
it reaches consensus (global culture) if a domain of one of
these options occupies the entire system. For q = 2, we can
view Axelrod’s model as a set of F coupled voter models. For
a general value of q, it still shares with the voter model the
basic stochastic dynamics driven by interfacial noise (see Fig-
ure 3). In fact, interfacial noise dissolves an initial condition
of one of the qF cultures’ bubbles on the background of an-
other cultural option with only one feature in common. Fig-
ure 4 shows several snapshots of the dynamical evolution
from random initial conditions in a d = 2 square lattice (see
www.imedea.uib.es/physdept/research_topics/socio/
culture.html). For a given value of F, the evolution from ini-
tial random conditions leads to a state of global culture (con-
sensus) or a multicultural state depending on the value of q.
The parameter q is a measure of the degree of initial disor-
der in the system. The fact that the system dynamics leads

to multicultural disordered states illustrates how local con-
vergence, enforced by the similarity rule in the dynamics,
can generate global polarization.

We can perform a systematic analysis of the dependence
on q from a statistical physics viewpoint via Monte Carlo
computer simulations.20 Defining an order parameter as the
mean value of the relative size of the largest homogeneous
cultural domain Smax, we find a nonequilibrium order–dis-
order transition as shown in Figure 5 for a d = 2 square lat-
tice. There exists a threshold value qc , such that for q < qc,
the system is ordered in a consensus, monocultural, uniform
state (<Smax>/N ~ 1), whereas for q > qc, the system freezes in
a polarized or multicultural state (<Smax> << N). The transi-
tion becomes sharp and well-defined for large systems, and
is a first-order transition in d = 2, but it becomes a continu-
ous transition in d = 1.21–23 In d = 1, the Axelrod dynamics
are an optimization dynamics for which we can find a Lya-
punov potential.23 (F = 2 is a special case20,22 that we won’t
discuss here.) Both qc and the transition itself are defined by
considering the dynamical evolution for an initial random
disordered configuration, not for arbitrary initial conditions.
We use here a set of uniform random initial conditions, but
other authors have used a Poisson distribution for the initial
random values of q.20

Figure 3. Axelrod’s model. For a system size N = 128 � 128 with parameter values F = 3 and q = 15, different colors indicate
different cultural states in snapshots of the model’s evolution at times t = 0, 114, 272, and 1,331.

Figure 4. Dynamical evolution. For a system size N = 32 � 32 with parameter values F = 3 and q = 10, snapshots of the time
evolution of Axelrod’s model from random initial conditions at times t = 0, 1,000, 3,000, and 6,807 show the emergence of
cultural domains. At time t = 6,807, the dynamics stop and the configuration freezes.
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The Axelrod Model in Complex Networks
The network of interactions among agents accounts for the
local geography in Axelrod’s model. Following our discus-
sion of the voter model, wondering how to modify the re-
sults for a complex network is natural.24 An expectation is
that with random long-distance interactions, local interac-
tions can no longer maintain heterogeneity.9 For a small-
world network, we find the transition remains sharply
defined as system size increases, but it shifts to larger values
of q as the disorder parameter p increases. As expected,
small-world connectivity favors cultural globalization. With
the phase diagram in Figure 6, we observe that for a given
value of q in which the system is in a polarized state in a reg-
ular network, we can reach consensus (global culture) by in-
creasing the disorder parameter of the network p.

In a scale-free Barabasi-Albert network,18 the Axelrod

model’s order–disorder transition becomes system-size depen-
dent, and the critical value qc shifts to larger and larger values
as N increases until a state of global culture (consensus) prevails
in the large systems’ limits. Moreover, for a fixed large value of
N and fixed average connectivity <k>, qc is larger in a scale-free
network than the limiting value of qc found for p = 1 in a small-
world network, and the scale-free connectivity is more efficient
than a random connectivity (p = 1) in promoting global culture.
These results for the Axelrod model parallel what happens for
a kinetic Ising model: the small-world connectivity increases
the critical temperature, whereas the critical temperature di-
verges with system size in a scale-free network.

As with the voter model discussion, we can also ponder
degree distribution’s role. The transition disappears for large
systems in a scale-free Barabasi-Albert network, but in the
SSF network,19 we find that the transition remains well-de-
fined at a finite value of q for large systems. The conclusion
is that the interaction network’s spatial dimensionality, not
just the presence of hubs, gives rise to the divergence of qc
with N. On the other hand, hubs create local order in the
system so that <Smax> takes a finite value for the multicul-
tural disordered state in an SSF network.

Cultural Drift: Exogenous 
Perturbations in the Axelrod Model
Among the open questions Axelrod discussed in his original
work,9 he mentions that “perhaps the most interesting ex-
tension and at the same time, the most difficult one to ana-
lyze is cultural drift.” Specifically, he suggests modeling it as
spontaneous changes of cultural traits. Cultural drift takes
into account that there is always some influence between
neighbors, even when they have completely different cul-
tures. In the language of physics simulations, he’s asking
about the role of noise in the order–disorder transition. 

The stochastic dynamics giving rise to this transition are
zero-temperature dynamics. The question is whether this
transition is robust against the presence of fluctuations, or
if any finite fluctuation disorders the system, as happens in
the d = 1 kinetic Ising model. Generally speaking, noise is
known to have two different effects: one produces disorder
by fluctuation accumulation and the other helps the system
find paths in which it can escape from the frozen disordered
configurations that lead to ordered states. An alternative way
of formulating the question is whether external perturba-
tions acting on a frozen multicultural state can take the sys-
tem to the consensus state. To address these issues, we
implement cultural drift in the model by adding a fourth
step in the iterated loop of the dynamics defined earlier:25
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Figure 5. Order–disorder transition. Normalized order
parameter <Smax>/N is a function of q for d = 2 square lattices
of sizes N = 50 � 50 and N = 100 � 100 for F = 10.
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Figure 6. Phase diagram. For the Axelrod model in a small-
world network of size N = 5002 for F = 10, the green area (q, p)
parameters show we’ve reached a polarized or multicultural
state. The other side of the continuous curve corresponds to
parameters for which we’ve reached consensus (state of
global culture).24
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4. With probability r, perform a single feature perturba-
tion in which randomly choosing an agent i and one of
its features f, the trait �if is replaced by a new randomly
chosen value.

Figure 7 shows simulation results for a d = 2 square lattice:
we observe a transition from multicultural to consensus
states controlled by an effective noise rate r � = r(1 – 1/q).
The factor (1 – 1/q) takes into account the probability that
the single feature perturbation doesn’t change the trait’s
value. This is a noise-induced transition because the control
parameter is a noise property. In addition, the transition has
universal scaling properties with respect to q: we find the
same result for different values of q and a consensus state for
any value of q as r goes to zero. Therefore, cultural drift de-
stroys the transition controlled by q that we find in the ab-
sence of exogenous perturbations (r = 0). In this sense, noise
here is an essential parameter that completely changes the
type of transition the system exhibits. 

An additional important point is the character of the states
found at both sides of the noise-induced transition. The dis-
ordered multicultural state found for large r is no longer a
frozen configuration—rather, it exhibits disordered noise-sus-
tained dynamics. On the other hand, the consensus or ordered
state found for small r is metastable. Once it reaches one of the
equivalent qF cultural states, the system doesn’t stay there for-
ever, but eventually a fluctuation takes it from this state to an-
other one of the equivalent qF states, as Figure 8 shows.

Why does the noise rate cause a transition? Here, we have
a competition between two time scales: the time scale at which
noise acts (1/r) and the relaxation time of perturbations T. For
a small noise rate r, there is time to relax, and the system de-
cays to a consensus state, but for a large noise rate, stochastic
perturbations accumulate and multicultural disorder builds
up. We then expect the transition to occur for rT ~ 1. We can
calculate the relaxation time T of perturbations as an exit time
in a random walk.23,25 A mean-field approximation gives it as
the time needed to reach consensus in a finite system follow-
ing the voter model dynamics; for a d = 2 square lattice, this is
T ~ N ln N.11,25 The noise-induced transition occurs for a sys-
tem-size-dependent value of r, but curves such as the ones
plotted in Figure 8 for different values of N collapse into a sin-
gle curve when plotted versus rN ln N.25 The general result
is that in very large systems’ limits, disordered multicultural
states prevail at any noise rate. Thus, cultural drift causes
global polarization in large systems, but as a state with noise-
sustained dynamics rather than a frozen configuration of spa-
tially coexisting equivalent cultures.

A n interesting open question for future developments
is to go beyond the static networks of interaction

considered here, allowing for a co-evolution of the net-
work and agent states. Other computer simulations of so-
cial dynamics have already started to implement this
general idea of co-evolution.26
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