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This paper reviews our recent work on the synchronization of excitable systems in a
master–slave configuration and when the slave system includes a delayed self-coupling
term. Particularly, we address the existence of the so-called anticipated synchronization,
i.e. a dynamical regime in which the slave system is able to reproduce in advance the
evolution of the master. This is most remarkable since the anticipated synchronization
appears even when the excitable spikes are induced by random terms, such as white
noise. After providing a short review of the general theory of synchronization as well as
the main features of excitable systems, we present numerical and experimental results
in coupled excitable systems of the FitzHugh–Nagumo type driven by different types
of noise. The experiments have been done in electronic implementations of the model
equations. We present the conditions (values of the coupling intensity and delay time) for
which the anticipated synchronization regime is a stable one and show that it is possible
to increase the anticipation time by using a cascade of several coupled systems. We use
a particular limit of the FitzHugh–Nagumo system, as well as a simple excitable model,
to give evidence that the physical reason for the existence of anticipated synchronization
is the lowering of the excitability threshold of the slave due to the coupling. Finally, we
propose a hypothesis for a possible explanation of the zero-lag synchronization observed
in some real neuron systems.

Keywords: Excitable systems; anticipated synchronization; cascade; zero-lag
synchronization.

1. Introduction

1.1. Synchronization phenomenon

Interactions between the constituents of physical or biological systems occur due
to the existence of different types of connections: global, local, unidirectional, mul-
tidirectional or others. Coupled interacting systems have been the subject of deep
observation since the 17th century. This interest has led to mathematical theories
which enable the understanding (at least partially) of the behavior of many coupled
systems including very complex ones in wide areas of natural and technical sciences.
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Under particular conditions, coupled systems may exhibit coherent behavior.
Such a phenomenon is called a synchronization and it describes a situation when
several identical objects performing initially, in the absence of interactions, oscil-
lations or rotational motions with different frequencies may, even in the presence
of very weak interactions, start moving with the same or multiple frequencies.1

Typical examples of synchronized behavior in the biological systems are the co-
incident pulses of light produced by male fireflies or the synchronized sounds of
crickets.2 In these examples, the interactions between the insects are mainly through
mutual perception, although they are also determined by environmental external
stimuli. Some experiments showed that an external periodic stimulus can influence
the degree and quality of the synchronization in fireflies. Another biological ex-
ample is that of cardiac cells whose global synchronized activity results in regular
heartbeating.

The first recorded observation of synchronization in physical systems was made
by Christian Huygens in the 17th century. In order to improve the time accuracy
in long sea trips, he came up with the idea of using two pendulum clocks hang-
ing from the same rack. To his surprise, he noticed that the two pendula were
beating in synchrony. This synchrony was due to the small coupling through the
common frame supporting both clocks. Some advances were made in the next two
centuries, when the study of synchronization was developed by E. Appleton, B.
van der Pol, A. A. Andronov and A. A. Vitt.3,4 They developed a synchronization
theory of electric and electromagnetic oscillations in electronics and radio-physics.
Further contributions by other scientists concerned synchronization in many types
of nonlinear oscillators: relaxation and forced ones, as well as in oscillators driven
by noise.5

In the late 1980s researchers turned their attention to the synchronization of
chaotic systems. This interest arose from the complex but at the same time de-
terministic characteristics of chaotic systems. Some studies were motivated by the
possible applications of chaos in secure communication systems. More precisely,
it was suggested the possibility of hiding a message in a chaotic signal during a
transmission.6 The advantage of this type of transmission lies in the difficulty of
the separation of the message from the chaotic signal with the correct receiver. If
an observer knows neither the equations of motion which were used to generate the
chaotic signal carrying the message nor the initial conditions, then the observer will
not be able to extract the hidden message. Nevertheless, it has to be said that there
have been some suggestions for methods for decryption and the usefulness of such
an encryption method is still under investigation. Pioneering work on synchronous
coupled chaotic systems was made by Yamada and Fujisaka in 1983, Afraimovich,
Verichev and Rabinovich in 1986, and Pecora and Carroll in 1990.7–10

As was mentioned above, the interest in the synchronization of chaotic systems
arises from their complex, unpredictable, but nevertheless deterministic dynamics.
Other types of systems which exhibit very complex and unpredictable dynamics
are stochastic systems, which are non-autonomous since they include noise in an
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additive or multiplicative (parametric) form.11 Contrary to the chaotic systems,
the stochastic ones exhibit unpredictable dynamics even for short periods. Many
biological systems operate in a stochastic regime, for example, neurons in the brain,
cardiorespiratory systems and population systems.12–14 For that reason, a great
deal of interest has been given to the synchronization of stochastic systems.15

In many cases of interest it is essential to include in the model, feedback loops
which inject a delayed signal back to the system.16 These dynamical terms are
generically known as time-delayed self-interactions. Delayed feedback appears in
models of nonlinear optical resonators, the ocean-atmosphere system or the neu-
ronal activity in the brain. Systems with delayed feedback become very complex to
study since the effective number of degrees of freedom are very large. This can be
easily understood by observing that the initial condition of a delayed differential
equation is a whole interval [x(t0 − τ), x(t0)] of function values.17,18 Thus, delayed
feedback, even in linear systems, can lead to very complicated dynamics.

Acting together, coupling and delayed feedback can lead to a phenomenon called
anticipated synchronization. This was first reported by Voss in 2000.19 Anticipated
synchronization can occur in two unidirectionally coupled systems, when one of
them (the so-called slave, y) becomes synchronized with the output of the other
(the master, x), but its signal is shifted back in time such that y(t) = x(t+τ), i.e. the
slave has the dynamics which the master system will have a time τ later. There are
two known delayed coupling schemes which can lead to anticipated synchronization.
One of them is the so-called complete replacement:

ẋ(t) = f(x(t),x(t − τ))
ẏ(t) = f(y(t),x(t)) ,

(1)

where x and y are dynamical variables, f is a vector function and τ is a constant
delay time. In Eq. (1) the time-delayed variable is replaced by a variable coming
from the master system. The anticipation time can be only equal to the delay
time which is present in the master system. Then the solution for the equations is
y(t) = x(t + τ). The other scheme which, contrary to the above case, permits to
obtain different anticipation times, is that with dissipative (diffusive) coupling:

ẋ(t) = f(x(t))

ẏ(t) = f(y(t)) + K(x(t) − y(t − τ)) ,
(2)

where x and y are dynamical variables, f is a vector function, K is a matrix rep-
resenting the coupling parameter and τ is a constant delay time. In this case, a
delayed term appears in the equation for the slave system.

Since its discovery by Voss, there has been a wide variety of systems in which
anticipated synchronization has been observed. These systems range from the sim-
plest linear systems to complex chaotic ones, suggesting that this phenomenon is
quite general. It appears in delayed coupled linear systems, for which a full sta-
bility analysis has been provided.20 Besides the systems described by differential
equations, chaotic maps with delayed diffusive coupling have also been studied.21
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The phenomenon has been found in chaotic Rössler and Lorenz systems, which may
be of some interest from a practical point of view since it could enable simultane-
ous prediction of the chaotic signal without involving any previous calculations.22

However, in the case of coupled chaotic systems with a dissipative delayed coupling
term it is very difficult to perform a stability analysis and only limited results can
be obtained using linearization or numerical methods. Anticipated synchronization
was also found in the delay-induced chaotic Ikeda system which describes phase
shifts in nonlinear optics.19 In this system a complete replacement scheme was
used since the master contains an internal delayed feedback. It was also studied in
coupled laser models.23 Interestingly, larger anticipation times can be achieved by
using a chain of master–slave systems.24 Finally, anticipated synchronization has
been demonstrated experimentally in electronic circuits as well as in semiconductor
lasers.25,26

1.2. Excitable systems

Neurons are classical prototypes of excitable systems: their response to an external
perturbation is highly nonlinear and depends on its magnitude and timing. If the
perturbation is small the system evolves back to the steady state; but if the per-
turbation exceeds a certain threshold (which may be well or not well defined), the
system fires a pulse-like spike (action potential ). According to the intuitive defini-
tion of excitability, small perturbations near the equilibrium global attractor can
cause large excursions for the solution before it returns to the equilibrium. Thus a
dynamical system having a stable equilibrium is excitable if there is a large ampli-
tude periodic pseudo-orbit passing near the equilibrium.27 Following the onset of
the excitation, there is an interval time, during which another perturbation does
not induce a new pulse, called refractory period.

Real neurons are complicated nonlinear systems involving a large number of
variables. Nevertheless, the essential features of their excitable behavior can be
captured with a much reduced description introduced by Hodgkin and Huxley.28

The model originally concerned the axon of the giant squid. Because of the still-
large complexity of the Hodgkin–Huxley (4-dimensional) system, various simpler
mathematical models, which capture the key features of the full system, have been
proposed. One of the best known is the FitzHugh–Nagumo model.29,30 The resulting
2-variable model can be described by the dimensionless system:

ẋ1 = f(x1) − x2 + Ia

ẋ2 = ε(x1 − bx2) ,
(3)

where f(x1) = x1(a − x1)(x1 − 1), 0 < a < 1 (for the excitable regime) and ε
and b are positive constants. Here x1 is a fast variable called the activator which is
proportional to the membrane potential V ; x2 is a slow variable called the inhibitor.
In the excitable regime and for Ia = 0 the system remains in the steady state
(x1, x2) = (0, 0). For Ia "= 0 and for particular values of Ia, a limit cycle oscillation
appears.
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|µ| > 1|µ| < 1 µ = 1

Fig. 1. Schematic presentation of the dynamics during the saddle-node bifurcation on invariant
circle.

The most important features of neuron models are that they can generate reg-
ular beatings of a limit cycle nature when the applied current Ia is within an
appropriate range. There are two types of bifurcations which allow the system to
be excitable and which result in a stable limit cycle when the controlled parameter
changes: saddle-node bifurcation on an invariant circle (or Andronov bifurcation)
and Hopf bifurcation (or Andronov–Hopf bifurcation).31–33 Saddle-node bifurcation
can appear in any dimension (excitability requires dimensions equal or larger than
two) and its mechanism consists of the creation and annihilation of fixed points.
As a parameter of the system is varied from above to below threshold, two fixed
points, one stable and one unstable move toward each other, collide, and mutually
annihilate. A saddle-node bifurcation on an invariant circle appears, for example,
in a model of overdamped pendulum. The dimensionless form of this model, in an
overdamped limit, is the following:

ẋ = µ − sin x (4)

with x = dθ/dt̄, t̄ = mgL/b and µ = Γ/mgL, where m is a mass of pendulum, L its
length, b is a viscous damping, Γ is a constant applied torque and θ is an angular
variable. As defined above, the parameter µ is the ratio of the applied torque to the
maximum gravitational torque. Since viscosity is large, the oscillations are possible
because of the applied torque — the energy is lost by damping and pumped by
an applied torque. If µ > 1 then the applied torque can never be balanced by
the gravitational torque and the pendulum will always make an excursion over an
unstable fixed point x+ = arcsinµ which is a saddle, and the flow consists of an
oscillation of the variable x (limit cycle regime). This limit cycle develops through
a saddle node bifurcation on an invariant circle (Andronov) at µ = ±1 (see Fig. 1),
where the two fixed points collide and annihilate. In the latter case, if µ < 1, the
unperturbed pendulum will never be able to reach an unstable fixed point and it
will always turn back to the stable fixed point x− = arcsinµ. Nevertheless, in this
case the system displays an excitable behavior: if we kick the system out of its stable
state with a large enough perturbation (larger than 2|arcsinµ|), the trajectory will
return to the initial state through a deterministic orbit that closely follows the
heteroclinic connection of the saddle and the node [an orbit which connects two
fixed points is called heteroclinic, while an orbit which connects a saddle point with
itself is called homoclinic (see Fig. 2)]. It is worth noting that in a system with
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Heteroclinic Orbit Homoclinic Orbit

Fig. 2. Schematic presentation of the heteroclinic and homoclinic orbits.

Supercritical Hopf

Subcritical Hopf
µ > 0µ < 0 µ = 0

µ < 0 µ = 0 µ > 0

Fig. 3. Schematic presentation of the dynamics during the Hopf bifurcation.

a saddle-node bifurcation the key element to obtain excitability is the heteroclinic
connection between the manifolds of the fixed points. Equation (4) appears not
only in mechanics in the form of overdamped pendulum with a constant torque,
but it also appears in condensed-matter physics to model dynamics of Josephson
junctions, as well as in biology to model oscillating neurons, firefly flashing rhythm
and human sleep–wake cycle. Usually this prototype equation carries the name
Adler’s equation.

Opposite to a saddle-node bifurcation, Hopf bifurcation can occur only in dimen-
sionality two or higher and appears for example in the FitzHugh–Nagumo system.
The Hopf bifurcation can be either supercritical or subcritical (see Fig. 3). A su-
percritical Hopf bifurcation appears when a stable spiral changes into an unstable
spiral surrounded by a limit cycle and is responsible for an excitable behavior of the
system. A subcritical Hopf bifurcation is responsible for bistable behavior. Before
the bifurcation, the system has two attractors: a stable limit cycle and a stable
fixed point at the origin. Between these two attractors lies an unstable limit cycle.
At the bifurcation point (µ = 0 at Fig. 3) the unstable limit cycle shrinks to the
origin, which becomes unstable, while the stable limit cycle remains but with larger
amplitude of oscillations than before the bifurcation. A definition of the Hopf bifur-
cation is formulated in the Hopf bifurcation theorem: a Hopf bifurcation appears
if when changing some parameter of the system we observe that both eigenvalues
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(in a two-dimensional case) change from real negative to complex ones with its real
parts positive. The parameter value at which the eigenvalues become complex with
the vanishing real parts corresponds to the bifurcation point.34

Excitable systems were categorized by Hodgkin according to the bifurcation type
into two classes. Class 1 excitable systems are the ones with a saddle-node bifurca-
tion on an invariant circle (for example Adler’s and Morris-Lecar systems). Class 2
excitable systems are characterized by the appearance of the Hopf bifurcation, as
the previously described Hodgkin–Huxley and FitzHugh–Nagumo models.35 The
type of bifurcation determines the neuro-computational properties of the cells. If
in the system a saddle-node bifurcation occurs, the cell can fire all-or-none spikes
with an arbitrary low frequency, it has a well-defined threshold manifold, and it
acts as an integrator: the higher the frequency of incoming pulses, the sooner it
fires. On the other hand, when a Hopf bifurcation occurs in the system, the cell
fires at a certain frequency range, its spikes are not all-or-none, it does not have a
well-defined threshold manifold, it can fire in response to an inhibitory pulse, and
it acts as a resonator: it responds preferentially to a certain (resonant) frequency
of the input.27

2. Anticipated Synchronization in Excitable Systems Driven
by Noise

2.1. Numerical results

Coupled excitable systems driven by noise in the regime of anticipated synchroniza-
tion were recently studied.36,37 The following scheme with diffusive coupling was
considered:

ẋ(t) = f(x(t)) + I(t)

ẏ(t) = f(y(t)) + I(t) + K[x(t) − y(t − τ)],
(5)

where x and y are dynamical variables, K is a positive defined matrix and I(t)
represents a common external forcing. It was shown that under appropriate coupling
conditions there can be a very good correlation between y(t) and x(t + τ), even if
the external forcing I(t) is a noise.36

Slave
Neuron

Master
Neuron

stimulus
external 

τ+ −feedback
delayed

Fig. 4. Schematic diagram of two model neurons coupled in a unidirectional configuration, sub-
jected to the same external forcing and with a feedback loop (with a delay time τ) in the slave
neuron.
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In particular, the authors studied anticipated synchronization in the FitzHugh–
Nagumo and Hodgkin–Huxley neuron models (see Sec. 1.2). By coupling two of
such systems in an unidirectional configuration as in scheme (5), they found that
the slave system fires the same train of spikes as the master system does, but at a
certain amount of time earlier when both systems are subjected to the same external
random forcing. It appears that the slave can predict the response of the master.
Two FitzHugh–Nagumo systems, the master x = (x1, x2) and the slave y = (y1, y2),
under unidirectional coupling are, respectively (see the schematic diagram shown
in Fig. 4):

ẋ1 = −x1(x1 − a)(x1 − 1) − x2 + I(t)

ẋ2 = ε(x1 − bx2) ,
(6)

and
ẏ1 = −y1(y1 − a)(y1 − 1) − y2 + I(t) + K[x1(t) − y1(t − τ)]

ẏ2 = ε(y1 − by2) ,
(7)

where a, b, and ε are constants, K is the positive coupling strength and τ is a delay
time. Different types of random external forcing I(t) (see Fig. 5) were considered.
The first one, “telegraph-like noise,” corresponds to a random process whose am-
plitude remains constant for a time T , switching subsequently to a new random
value chosen uniformly in [I0 − D, I0 + D], where D is the noise intensity and I0

(a) (b)

(c) (d)

Fig. 5. Return map fk(t) versus fk(t − 1) for (a) white noise (k = w), (b) colored noise (k = c),
(c) telegraph-like noise (k = t) and for (d) fk(t) versus fk(t−200) for telegraph-like noise (k = t).
Diagrams (c) and (d) for telegraph-like noise show that it remains constant during a particular
period of time.
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(a)

(b)

Fig. 6. Anticipated synchronization obtained from a numerical integration of the FitzHugh–
Nagumo set of Eqs. (6) and (7). The parameters are: a = 0.139, b = 2.54, ε = 0.008, τ = 4 and
K = 0.15. The external forcing I(t) (displayed in the lower panel) is a telegraph-like noise which
changes randomly its amplitude with a period T (in this case T = 2). Notice (upper panel) that
the pulse of the slave system y1(t) (dashed line) anticipates the pulse of the master system x1(t)
(solid line) by a time approximately equal to the time delay τ = 4.

is a constant [Figs. 5(c) and 5(d)]. If the effect of the perturbation is not strong
enough the system does not fire a pulse. Moreover if the system fires a pulse it
has a refractory time during which, another firing is not possible. These two fea-
tures make the considered system unpredictable. Figure 6 shows that anticipation
occurs with this type of random external forcing for an appropriate value of the
coupling strength K: after an initial transient time the two systems synchronize
such that the slave system anticipates the firings of the master system by a time
τ . The anticipated synchronization seems to be a local process. In the absence of
firings there is no anticipation (see Sec. 3 for an explanation of this observation).
The same qualitative results were found with other types of external forcing such
as colored and white noise. Figures 7(a) and 7(b) display the spikes of the master
and slave systems when I(t) is a Gaussian white noise.

Sometimes the slave system makes an error in anticipating the master firings.
While the slave system always fires a pulse when the master system fires a pulse,
it might also fire an “extra” pulse, which has no corresponding pulse in the master
[see Fig. 7(a)]. It was found that the longer the anticipation time τ , the larger
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(e)

Fig. 7. Trains of spikes obtained from numerical simulations of models of unidirectionally coupled
neurons subjected to the same external forcing, which is a Gaussian white noise: (a)–(b) two
FitzHugh–Nagumo neurons; Eqs. (6) and (7), with the parameters in the coupling term K = 0.03
and τ = 10; (c)–(d) two Hodgkin–Huxley neurons with the parameters in the coupling term
K = 0.03 ms−1 and τ = 50 ms; (e) two Adler systems, Eq. (4), with the parameters in the
coupling term K = 0.01 and τ = 1. Left panels show typical spike trains; right panels show with
detail a single spike. The solid (dashed) line represents the output of the master (slave) system.

the number of errors and loss of anticipated synchronization occurs. However, for
a given anticipation time, the number of errors can be reduced considerably if a
“cascade” of an adequate number of slave neurons is considered.
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(a) (b) (c)

Fig. 8. Stability regime in the coupling parameter K versus the delay time τ for one slave when
both master and slave systems are driven by different noises. Black color represents: (a) standard
deviation σ〈τ〉 < 0.16 and (b) relative error Er < 0.1. (c) The dependence of the mean anticipation
times measured at the threshold value xth = 0.65 for a coupling value K = 1 versus the delay time
used in equations (cross signs). Vertical lines correspond to the standard deviations for which the
longest one corresponds to σ = 0.75.

Fig. 9. Time series for the master (upper panel ), uncoupled slave (middle panel ) and coupled
slave (lower panel ) with coupling parameters K = 1 and τ = 1. Both systems are driven by
different realizations of white noise.

2.2. Systems with uncommon forcing

Numerical results (see Figs. 8 and 9) show that anticipated synchronization is pos-
sible when both master and slave systems are driven by different realizations of
white noise. We obtain a smaller stability region where the maximum anticipation
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time τ is shifted in the direction of larger coupling values. This result shows that
even in the presence of different white noise sources in both master and slave sys-
tems, a good anticipated synchronization can still be observed, although for larger
coupling values. In an instability region, two types of errors are observed: additional
spikes which occur only in the slave system and the deviation of the anticipation
time when compared to the spikes from the same time series. The appearance of
additional spikes is described by a relative error which is defined using the relative
number of spikes in master (Nm) and slave (Ns) systems: Er = (Ns − Nm)/Nm,
while the deviation of the anticipation time is described by the standard deviation
of an average anticipation time 〈τ〉: σ〈τ〉. The result shows that the anticipated
synchronization can appear even if different noises are injected into the master and
slave, which is interesting from a practical point of view. In real systems, biological
ones or artificially designed ones, it is very rare to find two systems that are sub-
ject to the same noise. Thus, the robustness of this phenomenon in this case could
become a useful feature.

2.3. Experiment

The implemented FitzHugh–Nagumo model in analog hardware was constructed
with two coupled electronic neurons. The electronic neurons were built using op-
erational amplifiers and the cubic nonlinearity described by x(x − a)(x − 1) was
implemented (see Ref. 36 for technical details). The electronic coupled neurons be-
haved very similar to that in the numerical simulations. For an appropriate value
of the coupling resistance RC (which plays the role of a coupling constant), it was
observed that after a transient, the master and slave electronic neurons synchronize
in such a way that the slave neuron anticipates the fires of the master neuron by a
time interval approximately equal to the delay time τ of the feedback mechanism.
Figure 10(a) shows a typical spike train, and Fig. 10(b) displays in detail a single
spike. Without coupling and feedback (RC = RD = 0) the neurons fired pulses
which were in general, unsynchronized (due to the mismatch between the circuits).

2.4. Cascade of neurons

In this section, we present the results of the effect of cascading several slaves units.
For this purpose we assume an array of slave systems that are connected unidi-
rectionally, as it is shown in Fig. 11, that can be described by the following set of
equations:

ẋ = f(x) + I0(t)
ẏ1 = f(y1) + I1(t) + K(x(t) − y1(t − τ1))

...
ẏN = f(yN ) + IN (t) + K(yN−1(t) − yN (t − τN )) ,

(8)
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(a)

(b)

Fig. 10. (a) Experimental train of spikes that shows anticipation in the spikes fired by the
slave neuron (upper trace) with respect to the spikes fired by the master neuron (lower trace).
(b) Detail of a spike fired by the master neuron and anticipated spike fired by the slave neuron.
The anticipation time is 14 ms approximately.

Kn=0 n=1
τ

n=NK n=2 K

τN2τ1

I I II 1 2 N

Fig. 11. An array consisting of a master system (n = 0) and N slave systems which are fed back
with a delay time τ and coupled unidirectionally with each other with a coupling parameter K.
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Fig. 12. Dependence of the mean anticipation time measured at the threshold value xth = 0.65
for coupling value K = 0.5 versus the delay time used in equations for the case of one slave (left
plot) and three slaves with equal delays in each of them (right plot). The standard deviations are
plotted in the form of vertical lines.

(a) (b)

(c)

Fig. 13. (a) Time series of the master system (solid line) and first slave system (dashed line) for
τ = 6 and K = 0.25. (b) Time series of master system (solid line) and third slave system in a
cascade (dashed line) for τi = 2 (where i = 1, 2, 3) and K = 0.25. (c) Time series of one peak of
the master system (solid line), first slave (dotted line), second slave (dashed line) and third slave
(dashed-dotted line).

where N is the number of slave systems. The approximate possible solution for this
system is:

yN
1 (t − τ) = yN

1

(
t −

N∑

n=1

τn

)
≈ x1(t) . (9)

Numerical results shown in Fig. 12 demonstrate that cascading several slave units
allows the improvement of the anticipated synchronization quality and also reduces
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(a) (b) (c) (d)

Fig. 14. Stability region estimated numerically and determined by the dependence of the coupling
parameters τ and K for one slave (a) and for three slaves with the following configuration of time
delays: (b) τ1 = τ2 = τ3 = 2; (c) τ1 = 1, τ2 = 2 and τ3 = 3; (d) τ1 = 3, τ2 = 2 and τ3 = 1. Dark
regions correspond to the standard deviation value σ < 0.15.

(a) (b) (c) (d)

Fig. 15. Stability region in terms of the relative error Er for one slave (a) and a cascade of three
slaves with τi = τj for i, j = 1, 2, 3; (b), τ1 < τ2 < τ3; and (c) τ1 > τ2 > τ3 (d). Black region
corresponds to Er < 0.1.

errors, as it can be seen in Fig. 13. From numerical simulations of FitzHugh–Nagumo
neurons with white noise (see Fig. 14), the stability region, considered in terms of
standard deviation σ, changes in the following way. When τ1 < τ2 < τ3, we observe
a slight shift of the maximum possible τ in the direction of smaller coupling con-
stants K, in comparison with the case τ1 = τ2 = τ3. Meanwhile, for τ1 > τ2 > τ3,
the maximum τ is shifted in the direction of larger coupling constants K, in com-
parison with the case τ1 = τ2 = τ3. Apart from the fact that the maximum possible
anticipation time in the three types of configurations is the same, qualitatively it
seems that the configuration τ1 = τ2 = τ3 is favored and has the widest stability
region in the parameter space τ(K).

A larger enhancement is observed (see Fig. 15) for the relative error (the rate of
additional spikes). The best configuration is again the one with equal delays in all
slaves τ1 = τ2 = τ3, while configurations with different delays give smaller regions
of stability.
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3. Dynamical Mechanism of Anticipated Synchronization in
Excitable Systems

The anticipated synchronization regime has often been described as a rather coun-
terintuitive phenomenon because of the possibility of the slave system to anticipate
the unpredictable evolution of the master one.19,20,25 It was given however, a simple
explanation for the physical mechanism behind the anticipated synchronization.38

The conclusion is that the anticipation in the slave is due to a reduction of its
excitability threshold induced by the delayed coupling term. As a consequence, the
master and the slave respond to the common external forcing with different response
times. A numerical proof for the lowering of an excitability threshold in the slave
system is presented in Fig. 16 on the examples of FitzHugh-Nagumo and Adler
systems. Two identical systems coupled unidirectionally with a delayed coupling
term are perturbed simultaneously by the δ-like pulse. For large enough amplitude
of perturbation, both systems fire a spike, with a slave which fires before the mas-
ter does [Fig. 16(a)]. Whereas for the smaller amplitude of perturbation, there is
only a spike fired by the slave [Fig. 16(b)]. Further decreasing the amplitude of the
perturbation, there are no firings, neither in the master nor in the slave [Fig. 16(c)].
The proposed dynamical picture allows the explanation of all the general features
of the phenomenon as well as to determine in a natural way, the maximum allowed
anticipation time which can be defined as the time interval between the applied
perturbation and the response time of the master system.

FitzHugh–Nagumo systems: Adler systems:

(a)

(b)

Master Slave

Fig. 16. Response of the master (x1, solid line) and slave (y1, dashed line) for two coupled
FitzHugh–Nagumo and two coupled Adler systems. Parameters for the FitzHugh–Nagumo case:
a = −1.01, ε = 0.09, τ = 4, K = 0.1, perturbation at the time t0 = 200 with duration ∆t = 1
and amplitude: (a) p = 0.4 and (b) p = 0.3. Parameters for the Adler case: µ = 0.95, τ = 5,
K = 0.01, perturbation at the time t0 = 10 with duration ∆t = 0.4 and amplitude: (a) p = 1.7,
(b) p = 1.65 and (c) p = 1.61. Lower left panel: the graphical representation of the master and
slave excitability thresholds in Adler system.
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4. Zero-Lag Synchronization in Real Neurons

Experiments on brain activity revealed the existence of simultaneous oscillations
in the activity of cortical areas separated by several millimeters, or even located
in different hemispheres, and between gamma oscillations (30–100 Hz) of neurons
separated by millimeter distances.39,40 One explanation for these zero-lag correla-
tions suggests that it could be simply a statistical artefact, while other explana-
tions involve models for coexistence of doublet firing of single neurons which en-
able coherent oscillations.41,42 Some authors suggest that the existence of zero-lag
oscillations is necessary for spatiotemporal integration of the activity of the axons.43

Several authors have pointed out that the simultaneous firing of selective neurons
in the brain (so-called temporal binding) plays a crucial role in visual awareness as
well as in memory structuring.44 Experimental observations which exhibit synchro-
nized signal firings at zero-lag brought us to the speculation that in real biological
systems the synchronization between neurons with different excitability thresholds
may appear (see Fig. 17).

L = v t L
.

master slave
neuron x neuron y

measurement of:
y(t) = x(t)

stimulus
external 

L = v t L
.

master slave
neuron x neuron y

measurement of:
y(t) = x(t)

stimulus
external 

(a) (b)

Fig. 17. Measurements of the signals coming from coupled neurons reveal zero-lag synchroniza-
tion despite the fact that they are separated in space by a distance L. As an example we consider
two cases when (a) the external stimulus is applied only to the master system or (b) the external
stimulus is applied simultaneously to the master and to the slave.

We consider two cases: coupled systems where only the master is feeded with
an external stimulus [Fig. 17(a)], and coupled systems which are feeded simulta-
neously by a common external stimulus [Fig. 17(b)]. We consider the master–slave
configuration of two Adler systems:

ẋ = µ − cosx + Ix(t)

ẏ = µ − cos y + Iy(t) + K(x(t − tL) − y(t − τ))
(10)

where tL is the time it takes for the signal to travel from the master neuron to the
slave one, and Ix (Iy) are external stimuli injected into master (slave) system. Fol-
lowing an explanation of the mechanism of anticipated synchronization in excitable
systems,38 we assume that the slave system has already an excitability threshold
lower than that of the master and replace a delayed coupling term K(x− yτ ) with
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a synchronization coupling term K(x − y). Thus we consider two coupled Adler
equations with different parameter values in the master and the slave:

ẋ = µ − cosx + Ix(t)

ẏ = µ′ − cos y + Iy(t) + K(x(t − tL) − y(t)) .
(11)

Figures 17(a) and 17(b) correspond adequately to the cases in Eq. (11) when Ix "=
0 and Iy = 0, and when both stimuli in the master and slave are nonzero and
equal, i.e. Ix = Iy. We have studied in more detail the case when master and
slave systems have different parameter values, since Eq. (11) can be considered in
some approximation as a consequence of Eq. (10). However, it is worth noting that
including a delayed feedback loop in the slave system is more advantageous since it
enables the control of the height of the excitability threshold, resulting in the ability
to control the magnitude of the response time. This is especially important when
thinking about the real neuronal systems in which the response plasticity due to the
external stimuli were observed experimentally.45 Numerical simulations have shown
(see Fig. 18) that in the case of Eq. (11), for Ix = Iy, tL = 0 and particular value
of δµ = µ′ − µ, anticipation or retardation of the slave’s pulse due to the master
pulse is observed. Thus the compensation of the time tL needed for an electric pulse
to travel from the master to the slave neuron could be achieved if tant = tL. Note
however that in this case even in the absence of the coupling term (or K = 0),
both neurons would be able to synchronize with zero-lag by a common forcing.
Conversely, in the previous case, if the stimulus in the slave is absent, Iy = 0, the
coupling parameter K plays a crucial role in the synchronization of both master
and slave systems. Numerical simulations of Eq. (11) with Iy = 0 and tL = 0 show
also that in this case, anticipation is possible. Thus we can observe y(t) = x(t) for
tL "= 0 if the difference between the response time of the master neuron tm

r and the
response time of the slave neuron tsr corresponds exactly to the time needed for an
electric pulse to travel from the master to the slave neuron tL = tmr − tsr. Then the
time it takes for the pulse to travel through the axon could be compensated, giving

Fig. 18. Dependence of the response time of a slave Adler system on the parameter’s difference
δµ between master and slave.
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Fig. 19. Appearance of anticipated and retarded response of a slave in Adler system, depending
on the magnitudes of coupling parameter K and difference δµ = µ′ − µ between the parameters
in the master and slave systems with µ = 0.95 in the master. The white region corresponds to:
tmr − tsr < 0 (the slave responds later than the master), grey: 0.25 > tm

r − tsr > 0; and black:
tmr − tsr > 0.25 (in the two last cases the slave responds faster than the master); where tm

r (tsr) is
the response time of the master (slave).

rise to a simultaneous firing of neurons. In Fig. 19 we present numerical results for
the appearance of retardation and anticipation of the slave in the parameter space
K and δµ.

5. Conclusions

In this review we have presented results on delayed coupled equations for excitable
systems driven by a common and even uncommon external forcing, which under
appropriate conditions may lead to anticipated synchronization. This happens de-
spite the fact that the anticipated synchronization manifold is not a solution of the
equations. The FitzHugh–Nagumo model was also implemented in analog hardware,
showing that the anticipation phenomenon is very general and robust.

Two types of errors appearing only in the slave system have been observed,
relative error and standard deviation of anticipation times, have been revealed to
be proportional only for small delay times, and deviations of anticipation times
appeared more often, even in the absence of additional firings. It was also shown
that the anticipated synchronization can be improved by cascading several units of
slave systems. The appearance of additional firings in the slave system and the fact
that the response time of an excitable system depends on its excitability threshold
(which is determined by the parameters of the system), lead to the explanation
of the anticipated synchronization in excitable systems in terms of a threshold
reduction.

Finally, we have proposed a hypothesis that the phenomenon of anticipated
synchronization might be responsible for the experimental observations of the zero-
lag synchronization between spatially separated coupled neurons.
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