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Abstract—Circadian rhythms in mammals are con-
trolled by neurons in the suprachiasmatic nucleus of the
hypothalamus, which are very efficiently entrained by the
24-hour light-dark cycle. Motivated by recent findings on
the relevance of neuronal heterogeneity, we model neurons
in the suprachiasmatic nucleus as chemically-coupled os-
cillators with non-negligible heterogeneity in their periods.
The system response to the light-dark cycle is studied as
a function of the coupling strength, forcing amplitude and
neuronal heterogeneity. Our results indicate that neurons
respond more coherently to external forcing when the right
amount of heterogeneity is present.

1. Introduction

Circadian rhythms are cycles of roughly 24 hours, de-
pendent on the dark-light ambient illumination, and present
in the physiological processes of many living entities [1].
In mammals the main mediators between the illumina-
tion periodicity and the biological rhythms are the two
suprachiasmatic nuclei (SCN), interconnected neural struc-
tures (they contain about 10.000 neurons each [1, 2]) lo-
cated in the hypothalamus.

The activity of the SCN displays oscillations in syn-
chrony with the external light-dark cycle. In vitro, individ-
ual neurons produce oscillations with a period ranging from
20 to 28 hours [3, 4], arising from a gene regulatory circuit
with a negative feedback loop. Oscillations at the global
nuclei level depend however on the interaction between the
SCN neurons. Coupling between cells is achieved partly
by neurotransmitters [3] such as the vasoactive intestinal
polypeptide (VIP), which are also relevant to mediate the
influence of the external light cycle onto the nuclei oscilla-
tions [5].

Our work builds on the proposal by Gonze et al. [6, 7]
that synchronization to the external forcing is facilitated by
the fact that interneuronal coupling transforms SCN into
damped oscillators which can then be easily entrained. We
show [8] that the presence of some level of heterogeneity
or dispersion in the intrinsic periods of the oscillators can
improve the response of the coupled neuronal system to the

external light-dark forcing.

2. The circadian pacemaker

We model the SNC as an ensemble of coupled neurons
subjected to a periodic forcing. Each of the neurons, when
uncoupled from the others and from the external stimulus,
acts as an oscillator with an intrinsic period. Heterogeneity
is considered insofar the individual periods are not iden-
tical, but show some degree of dispersion around a mean
value. For each one of the neurons i, i = 1, ...,N in the
SCN we use a four-variable model proposed by Gonze et
al. [6], which is based originally on the Goodwin oscil-
lator [9]. The variables (Xi,Yi,Zi,Vi) for each cell are as
follows: The clock gene mRNA (at concentration Xi) pro-
duces a clock protein (Yi), which activates a transcriptional
inhibitor (Zi) and this in turn inhibits the transcription of the
clock gene, closing a negative feedback loop. The mRNA
Xi also excites the production of neurotransmitter Vi, which
in the coupled system will be then the responsible of an ad-
ditional positive feedback loop.

Coupling between the neurons is assumed to depend on
the concentration F of the synchronizing factor (the neuro-
transmitter) in the extracellular medium, which builds-up
by contributions from all neurons. Under fast diffusion,
the extracellular concentration is assumed to equilibrate to
the average, mean-field, cellular neurotransmitter concen-
tration, F = 1

N
∑N

i=1 Vi. The resulting model is:

τi
dXi

dt
=

ν1K4
1

K4
1 + Z4

i

− ν2Xi

K2 + Xi
+
νcKF

Kc + KF
+ L(t) (1)

τi
dYi

dt
= k3Xi − ν4

Yi

K4 + Yi
, (2)

τi
dZi

dt
= k5Yi − ν6

Zi

K6 + Zi
, (3)

τi
dVi

dt
= k7Xi − ν8

Vi

K8 + Vi
, (4)

F =
1
N

N∑
i=1

Vi, (5)

with νc = 0.4 nM/h, Kc = 1 nM. Using the values ν1 =
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0.7 nM/h, ν2 = ν4 = ν6 = 0.35 nM/h, ν8 = 1 nM/h, K1 =

K2 = K4 = K6 = K8 = 1 nM, k3 = k5 = 0.7/h, k7 = 0.35/h,
the period of the limit cycle oscillations in the uncoupled
system for τi = 1 is T = 23.5 h.

Heterogeneity in the intrinsic periods has been intro-
duced by multiplying the left-hand-side of each one of the
equations (1–4) by a scale factor τi, so that the intrinsic pe-
riod Ti of the isolated neuron i is τiT . The variables τi are
independently taken from a normal random distribution of
mean 1 and standard deviation σ. In our numerical sim-
ulations we have explicitly checked that the τi have never
taken a negative value for the values of σ considered here.
The standard deviation σ is a measure of the diversity. A
value of σ = 0.1 for example corresponds to a standard de-
viation of 10% in the individual periods of the uncoupled
neurons, close to the observed variation of periods between
20 and 28 hours. Light is incorporated through a sinusoidal
time-dependent function L(t) = L0 (1 + sinωt) /2. The sig-
nal oscillates between the values L(t) = 0 and L(t) = L0
with a period 2π/ω = 24h.

3. Synchronization quantifiers

Coupling and/or forcing might synchronize the neuronal
oscillations. There are several possible measures of how
good this synchronization is. The interneuronal synchro-
nization will be quantified by the parameter of synchrony
ρ, defined as

ρ =

√
1 −
⟨∑N

i=1[Vi(t) − F(t)]2∑N
i=1 Vi(t)2

⟩
=

√⟨
F(t)2

1
N
∑N

i=1 Vi(t)2

⟩
,

(6)
where ⟨. . .⟩ denotes a time average in the long-time asymp-
totic state. ρ varies between a value close to 0 (no synchro-
nization) and 1 (perfect synchronization, with all neurons
in phase, Vi(t) = V j(t),∀i, j).

Even if the neurons synchronize perfectly their oscilla-
tions, the period of those oscillations may not coincide with
the mean period T of the individual oscillators or with the
period 2π/ω of the external forcing. In fact, in the unforced
(no light) case, the period of the common oscillations (for
the set of parameters given before, a dispersion of σ = 0.05
and a coupling K = 0.5) is approximately equal to 26.5 h
whereas the period of the forcing is 2π/ω = 24 h and
the mean period of the individual uncoupled oscillators is
T = 23.5 h. Thus, we are also concerned about the quality
of the global response of the neuronal ensemble to the ex-
ternal forcing L(t). A suitable measure of this response can
be defined from the time series of the average gene concen-
tration,

X(t) =
1
N

N∑
i=1

Xi(t), (7)

by computing the spectral amplification factor R [10],

R =
4
L2

0

∣∣∣⟨e−iωtX(t)⟩
∣∣∣2 . (8)

R is the normalized amplitude of the Fourier component at
the forcing frequency ω of the time series X(t).

4. Results

Figure 1 shows the influence of the neuronal diversity σ
on the different characteristics of the neural synchroniza-
tion processes at a light level L0 = 0.0025 and two values
of the neuronal coupling. Results for additional parameter
values can be found in [8].
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Figure 1: Synchronization characteristics as a function of diver-
sity σ. The two columns correspond to two different values of
the coupling constant K. Upper row: the synchrony parameter ρ;
second row: the mean ⟨T ⟩ of the individual periods Ti; third row:
the response order parameter R; bottom row: the maximum real
part of the eigenvalues of the linearized system.

The upper panels show ρ as a function of diversity σ. ρ
first decreases by increasing σ until σ . 0.04 − 0.05, but
then it develops a maximum. The range of values of L0 for
which this non-monotonous behavior is observed depends
on the coupling constant K: the larger K, the larger the
range of L0.

As stated before, the fact that neurons synchronize
amongst themselves does not mean that they synchronize
to the forcing by light. To study this point, we have com-
puted the individual periods Ti, i = 1, . . . ,N, of the oscil-
lators in the ensemble (a mean period is used in cases of
imperfect periodicity). The second row in Fig. 1 shows
the mean value ⟨T ⟩ = 1

N
∑N

i=1 Ti as a function of σ for two
values of K. Although, by construction, individual neurons
have periods that fluctuate around T = 23.5 h, the period
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of the resulting synchronized oscillations that occur in the
unforced but coupled (L0 = 0, K > 0) case, increases with
increasing coupling K. For example, ⟨T ⟩ ≈ 29 and 36 h
for K = 0.4 and 0.8, respectively, mostly independent of
the value of σ. As the forcing sets in, at low values of the
coupling strength, the mean period is ⟨T ⟩ = 24 h for all
values of L0 and σ. As the coupling between neurons in-
creases, larger values of L0 and/or σ are needed in order for
the mean period to coincide with that of the external forc-
ing. The important feature is that for low light intensity it is
possible to achieve a mean period of 24 h by increasing the
neuronal diversity. For example, in Fig.1, while identical
coupled neurons have periods close to 30 h, increasing σ
induces an adjustment of the period to 24 h. The transition
towards ⟨T ⟩ = 24 h is rather sharp, specially for large K.
This is a clear manifestation that diversity indeed is able
to improve the response to the external forcing. The same
conclusion about the constructive role of diversity can be
reached by looking at the measure of response R (third row
in Fig. 1). These plots show that system response to the
periodic light forcing displays a maximum value at an in-
termediate value of diversity σ. This indicates that it is
possible to improve neuronal synchronization to the daily-
varying light input by taking σ close to an optimal value.
In fact this maximum can be very large as compared with
the R value at zero diversity (see the case K = 0.4 in Fig.
1) so that one can say that one of the most noticeable ef-
fects of a non-vanishing neuronal diversity is to give the
system the capacity to respond efficiently to the 24h forc-
ing in situations of small or no response at this frequency in
the absence of diversity (the non-diverse neuronal ensem-
ble could be oscillating at a different frequency, as revealed
by high values of ρ).

4.1. Diversity and oscillator death

As an explanation for the improved response to the ex-
ternal forcing with diversity we argue that the main ef-
fect of the increase of the diversity is to take the oscilla-
tors into a regime of oscillator death [11] in which they
can be easily entrained by the varying part of the forc-
ing. To understand this mechanism we first split the forc-
ing into a constant (the mean) and a time varying part:
L(t) = (L0/2) + (L0/2) sin(ωt). Taking only the constant
part, L(t) = L0/2, Fig. 2 shows that the oscillators go from
self-sustained oscillations to oscillator death, i.e. the am-
plitude of the self-sustained oscillations vanishes, as σ in-
creases. Once oscillators are damped, they would respond
quasi-linearly to periodic forcing, at least if this forcing is
not too large, and linear oscillators always become syn-
chronized to the external forcing, independently of their in-
ternal frequency. This is consistent with what is seen also
in Fig. 2, where the neurons in the case of low heterogene-
ity oscillate synchronously with each other, but their com-
mon period is larger than the one of the light forcing. Only
when diversity brings the neurons to oscillator death can

all of them be entrained to the period of the forcing signal.
The mechanism is related to the one discussed by [6, 7], but
here we stress that neuron heterogeneity, as opposed to in-
ternal neuron parameters and couplings, is enough to damp
the collective neuron oscillations and bring the system to a
non-oscillating state where it can be more easily entrained.
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Figure 2: Left panels: time-dependent amplitude of the Vi vari-
able for a few selected neurons in the presence of constant light
and increasing σ. Right panels: amplitude of the same neurons
with sinusoidal light and increasing σ. The thin line on the bot-
tom of the graphs is the external light signal. K = 0.6. Diversity
increases from top to bottom.

An alternative way of checking this mechanism based on
diversity-induced oscillator death is by analyzing the sta-
bility of the steady state of the system of Eqs. (1–5) when
considering a constant forcing L(t) = L0/2. The fixed point
solution of the model can be calculated, Eqs. (1–5) lin-
earized around such steady state, and the eigenvalues of
the stability matrix computed for several realizations of di-
versity parameters τi. In each case, the positive or negative
character of the real part of the eigenvalue with the largest
real part indicates the instability or stability, respectively, of
the fixed point solution. Fig.1 shows the mean of that max-
imum real part of the eigenvalues averaged over various
realizations of the time scales τi, for N = 200 coupled neu-
rons, as a function of σ. In every diagram we can see that
low diversity yields an unstable steady state. This is where
self-sustained oscillations are observed. The eigenvalue be-
comes negative precisely at the σ value for which the other
indicators identify the onset of the 24h-entrainment.

A qualitative argument explaining the diversity-induced
oscillator death in our system of coupled neurons goes as
follows: We know from [6] that a single oscillator can
switch from a limit cycle to a stable steady state by adding
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a constant light forcing (i.e. replacing F in Eq. (1) by a
time-independent constant in the single-oscillator case) of
sufficient strength. Furthermore we have observed that the
amplitude of the oscillations decreases with rising diver-
sity (see Fig. 2), but the mean does not change. In a system
with low diversity we have large oscillations of F around
that mean value. If this value, taken as a constant, deter-
mines a stable steady state, then we argue that the large
oscillations lead the system into unstable regions, whereas,
by increasing σ the amplitude is decreased and the concen-
trations do not leave the neighborhood of the stable fixed
point, thus finding themselves damped all the time. This is
a possible mechanism for the diversity-induced oscillator
death phenomenon.

5. Conclusion

In this work we have analyzed the role of diversity in fa-
voring the entrainment of a system of coupled circadian os-
cillators. We introduce non-negligible heterogeneity in the
periods of all neurons in the form of quenched noise. This
is achieved by rescaling the individual neuronal periods by
a scaling factor drawn from a normal distribution. The sys-
tem response to the light-dark cycle periodicity has been
studied as a function of the interneuronal coupling strength
and neuronal heterogeneity.

Most of the cases of order induced by heterogeneity or
noise carried out so far [10, 12, 13, 14, 15], emphasize the
fact the diversity directly improves oscillator synchroniza-
tion. In our case the mechanism is rather different. Diver-
sity does not improve system synchronization directly. This
is achieved indirectly, by leading first to a diversity-induced
stabilization of the fixed points of the neurons forming the
system. Once steady concentrations are asymptotically sta-
ble, it is much better entrainable by the external forcing, so
that the damped neurons adapt easily to the external forcing
(and then, in addition, they appear as synchronized between
them).

Of course, it is an open question whether the observed
diversity in the periods of the neurons of the SCN has been
tuned by evolution in order to display a maximum response
to the 24 h dark-light natural cycle. A detailed experimental
check of our predictions would require to be able to vary
the amount of diversity in the neuronal ensemble.

Acknowledgements

We acknowledge financial support from MINECO
(Spain) and FEDER (EU) through project FIS2007-60327.

References

[1] S. Reppert, D. Weaver. “Coordination of circadian timing in
mammals.” Nature, vol. 418, pp. 935–941, 2002.

[2] R. Moore, J. Speh, R. Leak. “Suprachiasmatic nucleus or-
ganization.” Cell and Tissue Research, vol. 309, pp. 89–98,
2002.

[3] S. Honma, W. Nakamura, T. Shirakawa, K. Honma. “Di-
versity in the circadian periods of single neurons of the rat
suprachiasmatic nucleus depends on nuclear structure and
intrinsic period.” Neuroscience Letters, vol. 358, pp. 173–
176, 2004.

[4] D. Welsh, D. Logothetis, M. Meister, R. S.M. “Individual
neurons dissociated from rat suprachiasmatic nucleus ex-
press independently phased circadian firing rhythms.” Neu-
ron, vol. 14, pp. 697–706, 1995.

[5] S. J. Aton, C. S. Colwell, A. J. Harmar, J. Waschek, E. D.
Herzog. “Vasoactive intestinal polypeptide mediates circa-
dian rhythmicity and synchrony in mammalian clock neu-
rons.” Nature Neuroscience, vol. 8, pp. 476–483, 2005.

[6] D. Gonze, S. Bernard, C. Waltermann, A. Kramer,
H. Herzel. “Spontaneous Synchronization of Coupled Cir-
cadian Oscillators.” Biophys. J., vol. 89, pp. 120–129, 2005.

[7] S. Bernard, D. Gonze, B. Čajavec, H. Herzel, A. Kramer.
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