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ABSTRACT

We propose a simple modification of the Fisher droplet model
which, unlike classical nucleation theory, reproduces very well
some Monte Carlo equilibrium cluster distributions Pl for the
three-dimensional Ising or lattice gas model. It then follows
that pI(h) /p (h=O) = Aexp(-VQl) where Q (,hl/Y , y O.45,
when the magnetic field h is small enough, as suggested from
the consideration of an effective cluster size lY , while
seems rather proportional to h at larger values of the field,
as implied by some exact results.

INTRODUCTION

A simple cubic lattice of N vertices or sites with periodic boundary
conditions, each site having two states, "occupied by a particle" and "un-
occupied", with a constant attractive interaction V between nearest-
neighbor particles, is a familiar realization of the lattice gas model [1,21.
The relevant (configurational) energy of the system in the configuration C
is defined as

E(C) = -V-j) nin. , V>O. (1)
(i,j)1

Here ni is the occupation number of the ith site which, for a given configu-
ration C , takes on the value 1 if site i is occupied and the value 0 if
site i is unoccupied, C denotes the subset of the lattice comprising the
f N occupied sites, r N=2Lini , and the sum goes over all pairs (i,j) of
different sites, each pair being counted once only, which are nearest-
neighbors in the lattice.

There are a total of 2 N possible configurations on the lattice. In a
grand canonical ensemble at temperature T and fugacity z the probability of
the configuration C is

p(C) = z Nexp[-E(C) /kT] ¶ (z,T; N)
1
I (2)

where = C z IN exp (-E/ k T ) is the grand partition function [2].
Any configuration C can be partitioned into subsets Cr called clusters
defined as sets of occupied sites connected by bonds. A bond is a pair of
nearest-neighbor sites in the lattice. The size ir of a given cluster Cr is
defined as the number of (occupied) sites which belong to Cr ; its energy sr
is defined as the number of occupied-unoccupied bonds (including both, sur-
face and interior ones) incident on Cr. The average degree of compactness of
clusters may be measured, at least partially, in terms of sI, the average
value of sr over all clusters of size 1 . This information is to be combi-
ned with the knowledge of p1 , the probability for the occurrence of a clus-
ter of size 1 in the system, which is induced by the Gibbs probabilities
(2).

The description of the system configuration at temperature T and den-
sity f in terms of clusters via the quantities sl and p1 has both
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physical and mathematical interest in the percolation problem, in the theory
of metastable states and nucleation processes in a lattice gas or Ising spin
system and in many other problems [3-6]. The physical relevance of the con-
cept of clusters comes in part from the fact that they are expected to be
related in some cases to the grains or droplets observed by transmission
electron microscopy. Different assumptions and models concerning sl and p1
are nowadays controversial, however, and it is even unclear what should be
the most useful and precise definition for a cluster [6-81. It is the pur-
pose of this paper to discuss and extend some ideas concerning sl and pl in
the case of the nearest-neighbor lattice model described before and to relate
them to Monte Carlo data along the coexistence line and close to it in the
one phase region [8).

CLUSTER DISTRIBUTION

The above definition for a cluster implies that two different clusters
cannot overlap. Moreover, no sites in different clusters can be nearest-
neighbors so that one has from Eq. (1) that E(C) = ZrE(Cr). This means in
practice that we may regard our clusters as independent systems [9) .

Let Br denote the border sites of cluster Cr , i.e. the set of (un-
occupied) sites not in Cr that are nearest-neighbors of sites in Cr. The
probability for the occurrence of Cr , p(Cr) , can then be written as the con-
ditional probability that all sites of Cr are occupied, given that all sites
of Br are unoccupied, times the probability that all sites of Br are un-
occupied. The problem here is to conclude an explicit expression for pl1

The Fisher droplet model [5) gives, along the coexistence line,

pl = PO 1 exp [-a(T) lV] (3)

where a(T) = a 0 (Tc /T-I ). This is based on the assumptions that P1 is
proportional to exp el- e / k T ) , that the energy el of an 1-cluster has a
predominant contribution from its surface, and that this behaves like I
The "entropical" factor 1-r in Eq. (3) takes into account the number of
clusters of size 1 with different shapes. This is expected to be irrelevant
for large enough 1 and nucleation theories [4] usually set Z = 0 and
V"= 2/3 ; while the value 0-= 2/3 is suggested from some exact results at
1 -W GD [122 , Z ý 0 or some other non-dominat 1-correction seems important

in order to describe Monte Carlo data where one observes small (say, ilO)
as well as "large" (say, 100-i 1 300) clusters [8] . The term 1- T ,
Z 0 , seems also very important when trying to fit exact values [9) for P1

at T *0.5 Tc where pl becomes quite negligeable for, say 1 li0 [8) •

Assuming the validity of Eq. (3) near the critical temperature Tc it
readily follows [4-6] 0E= 0.64 and r = 2.2 . The resulting picture with
po(T) and a(T) adjustable parameters, combined with the sum rule

S1. Pl •(4)
1=1

is known to be inadequate to describe the data [4) . Thus it seems that the
only way to maintain an equation like (3) is to allow for a temperature de-
pendence on the exponent Z . One obtains then [8] that 1C 4 0 for T'
0.

3 9
Tc and • 0 increasing monotonically with temperature; e.g.

Z (0. 3 Tc) =- 0.78 , Z(O.5Tc) =0.
6

4 , &(0.8 Tc) = 1.4, C(O.9 Tc) = 1.65.
This temperature dependence on T. , however, is unpleasant for several
reasons. In the first place, because Z• was intended to be positive defined
and temperature independent [5,13) . Secondly, because the values for a(T)
in this case do not follow the requirement [53 that a(T).L.( Tc/ T- 1 ) (they
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even seem to follow the opposite trend [8] ). The known values for Z
neither seem to give the expected limit I --w 2.2 or so as T --w TC (see
before). Finally, one may obtain a better and more consistent description
of the data over a wide range of temperatures and densities with a reasonable
modification of the formula (3) which contains in pactice less adjustable
parameters than Eq. (3) itself.

We propose the modification
- • 2/3

p1 = POI exp (-al ) [1-3 exp (-a 1 2
13)] (5)

where a :a(T) , PO is determined by the sum rule (4), and Z and aC
are temperature (and density) independent. The last factor in Eq. (5) aims
to represent approximately the probability of unoccupied sites surrounding
the "average cluster" Cl (i.e., the probability that B1 is empty) while the
Fisher factor is kept to represent the occupation of the set Cl. We also
make the assumption that Eq. (5) should be consistent near Tc with the sca-
ling behavior

pl :1 -l(2+y/) f( ) f Y/10) (6)

where E ( Tc - T ) / 
T

c and y is a new critical exponent introducing a
cluster effective size IY E6 . The combination of Eqs. (5) and (6) leads
to Z. = 2 +y IV and a(T) so a t with t = 2 '3 Y/ 3y ; thus it follows
that the cluster distribution is determined by the usual critical exponents
P3 and F and by the constants ao, PO and y which are to be deter-

mined consistently with the sum rule (4) (i.e., no temperature-dependent
parameter is left in Eq. (5) ).

COMPARISON WITH MONTE CARLO DATA

The above distribution may be tested against some recent Monte Carlo
data [82 concerning equilibrium configurations C of the model described
before with N = 125,000 sites. The data was generated by the familiar me-
thod of "quenching" the model system from infinite temperature and letting it
to relaxe toward equilibrium at the coexistence line or in the one phase re-
gion. The model system was then allowed to evolve at equilibrium during a
large enough time interval to obtain good statistics when performing a time
averaging. The details of the computer simulations can be found else-
where [8,10J .

The basic step during the computer simulation is the move of a particle
to a neighboring empty site according to a prescribed transition probability
satisfying detailed balance [101 . This ensures that T remains strictly
constant in time, while the system is in contact with a heat bath at tempe-
rature T , so that the situation can be described by means of a canonical
ensemble. In the thermodynamic limit, N -p O , there should be no distinc-
tion between our results and those corresponding to the grand canonical
ensemble (2). This statement is known to hold already for most practical
purposes when N = 1.25 x10

5 [112 which is the case considered here. One
should only warn that "large" clusters for finite N will be different from
what they are in the thermodynamic limit. Hence great caution must be exer-
cised in deducing asymptotic, 1 -.p G , formulas for sl or p1  from the
data, specially when ? is very small. We are somewhat confident on the
data we are dealing with, however, in the sense that it becomes practically
indistinguishable [82 when compared with data corresponding to another simu-
lation with N = 0.5 x 10

7
, P 0.015 [71
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FIG. 1. Eq. (5) with • 2.09, as implied by scaling, adjusts the data
(see the inset) corresponding to T =0.59 Tc (triangles), T =0. 7 8 

Tc (cros-
ses) and T = 0.89 

T
c (circles) along the coexistence line when 0( = 0.88,

independent of temperature, and a :a0o t, t = 2 (b/3y , as expected. The
main figure shows the details around the origin where the differences be-
tween different predictions are more significative. Line 1 corresponds to
our best description, Eq. (9). Line 2 is the prediction Eq. (5). Lines 3
and 4 correspond to Eq. (3) with a temperature-dependent parameter Z ; in
this case, a(T) is not consistent with the extrapolated behavior near 

T
c

(see Fig. 2)

The scaling behavior (6) is very well confirmed by Monte Carlo data over
a wide range of temperatures, giving y =0.45± 0.02 [8,143 instead of the
classical droplet model value y= 1. Setting (b = 5/16 and -= 5 we then
have Z Z 2.09 (in contrast to the classical value T= 2.2) and t•'2.31 (ins
tead of t = 1.04 when "= 2/3 or t = 1 when V = 0.64).

Fig. 1 compares the computer simulation data along the coexistence line
with the prediction by Eq. (5) when Z = 2.09 , o( = 0.88 and a(0.6 Tc)= 1.40,
a(0.8 Tc) 0.38, a(0.9 T ) 0. 10 . These values for a(T) are compared with
the expectation a- £2.9i in Fig. 2 . Fig. 2 also includes the values for
a(T) obtained by fitting Eq. (3) to the data; these values are seen to be far
away from the expectation a- S1.04 . We thus find that the evidence here,
together with the one in Ref. [82 , definetely favors the assumptions con-
tained in Eqs. (5) and (6).

ONE-PHASE REGION

The classical droplet model £4,53 predicts that pl(h) o&ps exp(- hl )
in the one-phase region; h represents here (in the language appropriate for
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FIG. 2. We compare here the expecta-
tions a - St , t= 1.04 or t= 2.31 res-

ot-Z3 pectively with the values of a(T) ob-
tained by fitting the computer simula-
tion data with Eq.(3), where Z. is

-1.04 allowed a temperature dependence (cir-
cles) , and with Fq. (5), where .* =-2.09
(crosses). Note that only the conse-

-2 quences from Eq.(5) seem again to be
supported by the data.

3-3 -2 -1 0 1
Ln C

the spin system) the external magnetic field defining the phase point consi-
dered at each T, and pT - pl(h = 0) . On the other hand, extending the vali-
dity of scaling behavior [6] it follows that p,(h) = ps f'(h 1Y) at small h.
This scaling property with y=0.45 is again confirmed very well by the data
corresponding to small fields [82 . More precisely we find (see Fig.3) that

p (h) /ps o& exp(- ll) (7)

where 7 o& h /y for h4O.l ( hPCH /k T with the usual notation [82 ) while it
seems that one rather has the classical prediction 1 h for h > 0.2 [7J.
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FIG. 3. (a) A test of Eq.(7) to show that -- hI/y when h<O.l . The
graph deals with hr, the relative field assuming that h= I at TI0.89Tc,
S =0.1 . The numbers shown are the slopes of the corresponding lines.
Here (3= 0.03. The same situation occurs at other temperatures and small
fields. (b) Similar graph when lh[jO.2; data from Ref. [7]. Here h =-0.2
(?=0.019) and h =-0.55(f =0.044); the data rather suggest that 2&h.
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In order to describe any value of the field in a compact formula, one
may assume [92 that Pl 2 Q1 wl ( i- g )kl where w = w(T, 9 ) is a renorma-
lized "fugacity" and Q1 is a "cluster partition function" F8] . Using the
exact values computed by M. Sykes for Q1 up to 1 = 10 one may find the ad-
justable parameters w and k, ; we found [8] that kI = 3.25 , k 2 = 4.5 , ki
5, 3 Al Ai0, independent of T and f , and will assume that k1 = 5 for
1>.10. The partition functions Q, for 1>10 can be estimated from Eq.(5),

WlSQ /Q l wexp[-(9inp 1 / 9l)1+ 3, (8)

so that one may compute p,(h) in general as

- w
1
-
1 

1-1 )- 1a
110 (wl o . (9)

Fig. 1 compares this formula with the computer simulation data. One also has
from above:

p /p= w/ W 1 - fs )]kl (10)

where ws and f s are respectively the values of w and 9 at h =0.

We finally mention that assuming the factorization of the scaling func-
tion p1 (h) it readily follows [8] that Sl-Ix with x=0.84. This is
also reasonably confirmed by the computer simulation data with 0.814x 4
0.90, slightly changing with temperature. It seems difficult, however, to
discard a behavior Sl- 1 + b 12/3 with the finite amount of data which is
available to us. The latter would imply that the scaling function does not
factorize and that s lx f ( 1 z) , x = 0.84, z = 0.29 and that one
has f'- 'lY-z( 1 + b 1 1/3)
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