# Stochastic simulations of cell-cell signalling in hepatocytes

M.E. Gracheva\*, R. Toral\*\* and J.D. Gunton\*\*\*

\* Physics Department, Lehigh University, PA, USA, meg2@lehigh.edu

\*\* Instituto Mediterraneo de Estudios Avanzados (IMEDEA) CSIC-UIB
E-07071 Palma de Mallorca, Spain, raul@galiota.uib.es

\*\*\* Physics Department, Lehigh University, PA, USA, jdg4@lehigh.edu

#### **ABSTRACT**

We present results of a Monte Carlo simulation of stochastic e®ects for two models of intercellular calcium wave propagation in rat hepatocytes. Both models involve gap junction di®usion by a second messenger. In general taking into account the stochastic e®ects improves agreement with experiment. Both stochastic models exhibit baseline °uctuations and variations in the peak heights of  $Ca^{2+}$ . In addition, we  $^-$ nd for one model that there is a distribution of latency times, rather than a single latency time, with a width which is comparable to the experimental observation of spike widths. We also  $^-$ nd for the other model with low gap junction diffusion that it is possible for cell multiplets to oscillate independently initially, but to subsequently become synchronized.

Keywords: Stochastic, intercellular, calcium waves, gap junctions, hepatocytes.

### 1 INTRODUCTION

Cell to cell signals control the development of multicellular organisms as well as most of their functions [1]. These signals have many di®erent manifestations and provide excellent examples of nanoscale biology. Calcium signaling plays a particularly important role in cell communication. Such intercellular communication can take di®erent forms, including gap junction coupling, paracrine signaling and the recently discovered extracellular calcium signaling [2].

A paper by Tordjmann et al. [3] studied calcium waves induced by noradrenaline and showed that gap junction coupling is necessary for the coordination of the oscillations between the di®erent cells. The authors also demonstrated that it is necessary to have hormone stimulation at each hepatocyte in order to have cell-cell calcium signal propagation. In a subsequent paper [4] they continued these studies, combining single-cell studies with experiments on cell populations isolated from the peripheral and central zones of the liver cell plate. They found strong evidence that the sequential pattern of calcium responses to vasopressin in these multicellular rat hepatocyte systems was due to a gradient of cell sensitivity (from cell to cell) for the hormone. Based

upon these experimental studies, two models have been put forward in order to explain the observed results.

The <code>rst</code> model is due to Dupont et al. who [5] studied a model based on junctional coupling of multiple hepatocytes which di®er in their sensitivity to the hormonal stimulus. The model yielded intercellular waves that were con <code>rmed</code> experimentally [5]. The authors also presented experimental evidence that the degree of synchronization is greater for the <code>rst</code> few spikes, in agreement with the prediction of their model. They also presented evidence that suggested, within the context of their model, that  $\mathrm{IP}_3$  di®usion through gap junctions plays the dominant role in the synchronization of intercellular spiking (rather than  $\mathrm{Ca}^{2+}$  di®usion).

An alternative model has also been proposed by Häfer [6] to explain the experimental results obtained in the rst paper by Tordjmann et al [3]. Häfer noted that this experiment revealed a rather large variability in oscillator frequency between adjacent cells, which he argued is likely to be of random nature. As a consequence he studied the possibility that this originates from random variations in the structural properties of cells (cell size, cell shape, or ER content). In addition, Ca<sup>2+</sup> was assumed to be the second messenger [6]. His results were in reasonable agreement with those of [3].

Both models are deterministic, described by di®erential equations with boundary conditions for the cell multiplets and with di®usion between cells. Such models, however, do not incorporate stochastic e®ects such as °uctuations in the baseline values of calcium and variations in the amplitudes and widths of the spikes that have been seen experimentally [3], [4].

To obtain a better explanation of the experimental results, we have studied stochastic versions of the above two models. Our simulation is based on a Monte Carlo method due to Gillespie [7]. Stochastic models of intracellular  $Ca^{2+}$  spiking for a variety of cell types have been studied previously [8].

## 2 Ca<sup>2+</sup> SYNCHRONIZATION OF HETEROGENEOUS CELLS

We <sup>-</sup>rst study a stochastic version of the deterministic model proposed by Häfer [6] to explain the synchronization of calcium oscillations in heterogeneous hepa-

tocyte cells found by Tordjmann et al. [4]. He assumed that the concentration of IP<sub>3</sub> rapidly reaches a steady-state value (which can di®er for di®erent cells) that is treated as a parameter of the model. We will be considering in this study single cells, doublets and triplets.

Let  $x_j$  and  $z_j$  be, respectively, the cytosolic calcium concentration and the free calcium content in cell j. The latter is de ned as  $z_j = x_j + \bar{\ }_j y_j$ , where  $y_j$  denotes the free calcium concentration in the ER.

After some simpli<sup>-</sup>cation H $\hat{a}$ fer obtained the following deterministic model for the time evolution of the  $x_j$  and  $z_i$  variables:

The last term, proportional to °, denotes di®usion between cells. The index pairs (i;j)=(1,2) and (2,1). The system can be easily generated to the case of more than two cells. In these equations  $P_j$  is the  $IP_3$  concentration in cell j. The  $IP_3$  R release function  $k_r(x_j;P_j)$  describes the gating kinetics of the  $IP_3$  receptor and it is given by

$$\begin{split} k_{r}(x_{j};P_{j}) &= \underset{d_{2}}{\mu} \frac{1}{d_{1} + P_{j}} P_{j} x_{j} \\ k_{1} &= \underbrace{\frac{d_{1} + P_{j}}{d_{3} + P_{j}} P_{j} x_{j}}_{(d_{p} + P_{j})^{3} (d_{a} + x_{j})^{3}} \frac{1}{d_{2} \frac{d_{1} + P_{j}}{d_{3} + P_{j}}} + x_{j} \\ \end{split}$$

The parameters  $\frac{1}{3}$ , ® and  $\frac{1}{3}$  de ne various structural characteristics of the cell and account for the heterogeneous behavior of di®erent cells. Table 2 summarizes the values we adopt for these parameters.

The above set of equations are deterministic and do not consider at all the °uctuations that appear from the fact that the chemical reactions do not occur uniformly and continously in time. Gillespie's method considers speci⁻cally that (a) the concentration of molecular species can only vary by a discrete amount and (b) the chemical reaction itself is a stochastic process that occurs with a certain rate. In accordance with Gillespie's method, we introduce the number populations of cell j as  $X_j$  and  $Z_j$ , such that the concentrations of the reactants are obtained as:  $X_j = x_j = W$ ;  $Z_j = z_j = W$ . Here W is the volume of cytosolic compartment of the cell, with °uctuation e®ects being most notable for small W.

| Par.                | Value                              | Par.           | Value                            |
|---------------------|------------------------------------|----------------|----------------------------------|
| P                   | 2.0 <sup>1</sup> M                 | $d_1$          | 0.3 <sup>1</sup> M               |
| °0                  | 0.2 <sup>1</sup> Ms <sup>; 1</sup> | $d_2$          | 0.4 <sup>1</sup> M               |
| o<br>c              | 4.0 <sup>1</sup> Ms <sup>i 1</sup> | $d_3$          | 0.2 <sup>1</sup> M               |
| $K_0$               | 4.0 <sup>1</sup> M                 | d <sub>p</sub> | 0.2 <sup>1</sup> M               |
| $^{\mathrm{o}}_{4}$ | 3.6 <sup>1</sup> Ms <sup>i 1</sup> | $d_a$          | 0.4 <sup>1</sup> M               |
| $K_4$               | 0.12 <sup>1</sup> M                | $k_2$          | 0.02 s <sup>i 1</sup>            |
| $^{\rm o}_3$        | 9.0 <sup>1</sup> Ms <sup>i 1</sup> | 1/2            | 0.02 <sup>1</sup> m <sup>1</sup> |
| $K_3$               | 0.12 <sup>1</sup> M                | ®              | 2.0                              |
| $\mathbf{k_1}$      | 40.0 s <sup>i 1</sup>              | _              | 0.1                              |

Table 1. Typical simulation constants for model with intercellular di®usion of Ca<sup>2+</sup>.

Following [6] we consider a spherical cell with a radius of 6  $^{1}$ m, with a cytosolic volume of about W = 300  $^{1}$ m<sup>3</sup>.

To determine the maximum value of  $^\circ$  we should use in the stochastic model we simulated the experimental study of the doublet of hepatocytes, namely,  $^-$ rst with only one of the cell stimulated with a hormonal input and then with both cells simultaneously stimulated. From the experimental results we know that local perfusion is not su $\pm$  cient for coordinated oscillations. Global perfusion of both cells, on the other hand, produces a well synchronized  $Ca^{2+}$  oscillation in the two cells. In our simulations we see that the two cells respond differently, with di®erent periods of oscillations; in neither case does the unstimulated cell show  $Ca^{2+}$  oscillations. But if we stimulate both hepatocytes they respond with well coordinated  $Ca^{2+}$  oscillations. This yields the value of  $^\circ$ max = 0:07 si  $^1$ .

Next we study the behavior of two connected hepatocytes. To simulate the experimental situation of two slightly di®erent cells, we follow Häfer and choose different structural parameters, with  $^-1$  = 0:15,  $^-2$  = 0:2, The calcium oscillations in the two cells are totally uncoordinated if the membrane permeability set to zero, as should be the case. For value of the permeability  $^\circ$  =0:07 si  $^1$  we  $^-$ nd 1:1 locking (Fig. 1).

Experiments also show the absence of coordination among the calcium signals in connected hepatocytes at low concentrations of stimuli. To simulate this situation we applied a low stimulation level  $P=1^{1}M$  to two cells, with di®erent structural properties. We found that calcium oscillations become synchronized with time. Although this e®ect has not been seen experimentally, it would be interesting to have experimental observations of calcium oscillations over long time intervals for medium stimulation levels. It is possible that even cells that are initially unsynchronized may become synchronized later on.

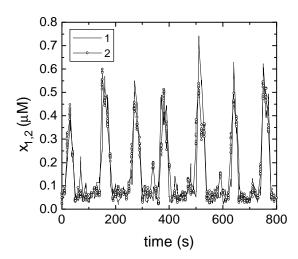


Fig. 1. Calcium oscillations for a doublet of cells with the permeability constant  $^{\circ} = 0.07s^{i-1}$ .

### 3 IP<sub>3</sub> SYNCHRONIZATION VIA HORMONAL SENSITIVITY GRADIENT

The second model we study is due to Dupont et al. [5] and considers  $IP_3$  as the second messenger responsible for coordination of  $Ca^{2+}$  signaling in connected hepatocytes. This model is based on the experimental observation that the number of external receptors on a hepatocyte membrane depends on its location in the liver cell plate [4]. Thus the authors consider a model of a multiplet of gap junction connected cells, with a small variation in the individual cell frequencies. The dynamics of each cell j is described by a set of three dynamical variables  $R_j^{\rm des}$ ,  $x_j$  and  $y_j$ . These are the fraction of inactive  $IP_3$  receptors, the concentration of cytosolic  $Ca^{2+}$  and the concentration of  $IP_3$ , respectively. There is intracellular di®usion of calcium and intercellular di®usion of  $IP_3$ , with the latter providing the coupling between

| Par.             | Value                                    | Par.              | Value                         |
|------------------|------------------------------------------|-------------------|-------------------------------|
| k <sub>+</sub>   | 25.0s <sup>i 1</sup> 1 M i 4             | Ca <sub>tot</sub> | 60.0 <sup>1</sup> M           |
| k <sub>i</sub>   | 2.5 £ 10 <sup>i 3</sup> s <sup>i 1</sup> | $K_{IP}$          | 11M                           |
| K <sub>act</sub> | 0.34 <sup>1</sup> M                      | $V_{\mathbf{K}}$  | $7.5£10^{31}M=s$              |
| $\mathbf{k_1}$   | 42.0s <sup>i 1</sup> 1 M i 1             | $V_{PH}$          | $7.5£10^{i} {}^{2} {}^{1}M=s$ |
| b                | 10 <sup>i 4</sup>                        | $K_{K}$           | 11M                           |
| $K_{PH}$         | 10 <sup>1</sup> M                        | ®                 | 0.1                           |
| $V_{MP}$         | $8.0^{1}\text{M}=\text{s}$               | $K_d$             | 0.5 <sup>1</sup> M            |
| K <sub>p</sub>   | 0.4 <sup>1</sup> M                       | F <sub>IP</sub>   | 0.35 <sup>1</sup> m=s         |

Table 2. Simulation constants for model with intercellular di®usion of IP<sub>3</sub>:

adjacent cells. The equations of motion are taken to be

$$\frac{dR_{j}^{des}}{dt} = k_{+} x_{j}^{4} \frac{1 i R_{j}^{des}}{1 + (x_{i} = K_{act})^{3}} i k_{i} R_{des}; \quad (3)$$

$$\frac{dx_{j}}{dt} = k_{1}(b + IR_{a})[Ca_{tot}; x_{j}(^{\otimes} + 1)]$$

$$i V_{MP} \frac{x_{j}^{2}}{x_{i}^{2} + K_{P}^{2}}; \tag{4}$$

$$\frac{dy_{j}}{dt} = V_{plc;j} \mid V_{K} \frac{y_{j} x_{j}^{2}}{(K_{K} + y_{j})(x_{j}^{2} + K_{d}^{2})}$$

$$\downarrow V_{PH} \frac{y_{j}}{K_{PH} + y_{i}}; \qquad (5)$$

$$IR_{a} = \frac{1 i R_{j}^{des}}{1 + (K_{act} = x_{j})^{3} K_{IP}^{3} + y_{j}^{3}}$$
(6)

At each boundary between two cells:

$$D_{IP} \frac{@y^{i}}{@x} = D_{IP} \frac{@y^{+}}{@x} = F_{IP} (y^{+} \mid y^{i}):$$
 (7)

where the superscripts + and - indicate the IP $_3$  concentration at the right and left limits of the border, respectively. All parameters are given in Table 3 We consider cells  $20^{1}$  m long, each containing 20 grid points.

We study, using Gillespie's method, a stochastic version of this model for di®erent cell volumes and for a range of values of the cell-cell permeability. We consider  $W = 400^{1} \text{ m}^3$ . Figure 2 shows our results as well as those for the deterministic limit  $W = 50;000^{1} \text{ m}^{3}$ . The results in the deterministic limit are consistent with [5], as to be expected. In contrast to the deterministic model where the induction time (latency of cell) depends only on the stimulus strength, we <sup>-</sup>nd a distribution of induction times in the stochastic model, due to °uctuations in the calcium concentration. Fig. 3 shows the distribution of induction times for one stimulated cell with  $V_{plc} = 2 \pm 10^{i \ 3}$  M=s. As there does not appear to be any systematic experimental study of such a distribution, we have no data to compare our results with. It is also the case that the calcium spikes in these experiments have a width of 20; 30 s, which means that would be di±cult to see °uctuations in the central position of the spikes.

For two connected cells we determine the cell-cell permeability following reference [5], such that a doublet of cells, with only one cell doped with stimulant, exhibits calcium oscillations only in the stimulated cell (as has been shown experimentally). We have to use a smaller value for the permeability than in the deterministic study because noise in the baseline produce spikes in the second, non-stimulated cell if the permeability is

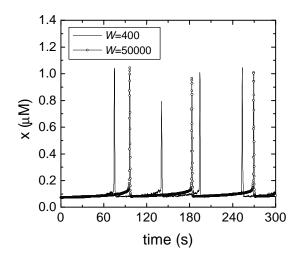


Fig. 2. Results of calcium oscillations in one cell for the stochastic version of Dupont et al. model for values of W = 400; 50000. Notice that, as expected, °uctuations decrease with increasing W and that the deterministic limit is already well reproduced by W = 50000. Initial conditions are resting states corresponding to  $V_{plc} = 6:5 \pm 10^{141} \, \text{M/s}$ .

larger then 0:35 <sup>1</sup> m/s. Another distinguishing feature from the deterministic model is that stochastic e<sup>®</sup>ects produce a variation in the spike amplitudes.

We nd that two stimulated cells don't go out of phase as rapidly as in the deterministic model. The experimental results exhibit more synchronization between cells than in this stochastic model. However, the stochastic model yields better agreement with experiment in terms of the variation in amplitudes and period variations.

### 4 CONCLUSION

We have studied calcium oscillations in connected hepatocytes for two di®erent stochastic models of calcium dynamics. We have solved these two models using a Monte Carlo approach, considering each term in a model as a speci<sup>-</sup>c reaction occurring with a certain reaction rate. Our models are in better agreement with experiment than are the deterministic models. Both stochastic models exhibit baseline °uctuations and variations in peak heights. All the results of both deterministic models have been reproduced for their stochastic versions in the limit of large volume, as should be the case. We conclude that it is important to take into account stochastic e®ects in modeling calcium oscillations in connected hepatocytes.

Acknowledgments: This work was supported in part by NSF Grant number DMR9813409 and the DGES

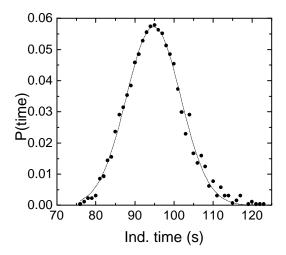


Fig. 3. Distribution of induction times for one cell with W=400,  $V_{plc}=2\pounds10^{i\ 3}\,{}^{1}M/s.$ 

(Spain) project PB97-0141-C02-01. We also wish to acknowledge helpful correspondence with G. Dupont.

#### REFERENCES

- [1] Goldbeter A., Biochemical Oscillations and Cellular Rhythms, Cambridge University Press, 1996.
- [2] Häfer, A. M., S. Curci, M. A. Doble, E. M. Brown, E. M. and D. I. Soybel Nature Cell Biol. 2, 392,2000.
- [3] Tordjmann, Th., B. Berthon, M. Claret, L. Combettes, EMBO J. 16, 5398, 1997.
- [4] Tordjmann, Th., B. Berthon, E Jacquemin, C. Clair, N. Stelly, G. Guillon, M. Claret and L. Combettes, EMBO J. 17, 4695, 1998.
- [5] Dupont, G., Th. Tordjmann, C. Clair, St. Swillens, M. Claret, L. Combettes, FASEB J. 14, 279, 2000.
- [6] Håfer, Th., Biophys. J. 77, 1244,1999.
- [7] Gillespie, D., J. of Phys. Chemistry 81, 2340, 1977;J. of Comp. Phys. 22, 403, 1976.
- [8] Keizer, J., G. D. Smith, S. Ponce-Dawson and J. E. Pearson, Biophys. J. 75, 595, 1998.