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ABSTRACT

We present results of a Monte Carlo simulation of
stochastic e®ects for two models of intercellular calcium
wave propagation in rat hepatocytes. Both models in-
volve gap junction di®usion by a second messenger. In
general taking into account the stochastic e®ects im-
proves agreement with experiment. Both stochastic mod-
els exhibit baseline °uctuations and variations in the
peak heights of Ca2+. In addition, we ¯nd for one model
that there is a distribution of latency times, rather than
a single latency time, with a width which is compara-
ble to the experimental observation of spike widths. We
also ¯nd for the other model with low gap junction dif-
fusion that it is possible for cell multiplets to oscillate
independently initially, but to subsequently become syn-
chronized.
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1 INTRODUCTION

Cell to cell signals control the development of multi-
cellular organisms as well as most of their functions [1].
These signals have many di®erent manifestations and
provide excellent examples of nanoscale biology. Cal-
cium signaling plays a particularly important role in cell
communication. Such intercellular communication can
take di®erent forms, including gap junction coupling,
paracrine signaling and the recently discovered extra-
cellular calcium signaling [2].

A paper by Tordjmann et al. [3] studied calcium
waves induced by noradrenaline and showed that gap
junction coupling is necessary for the coordination of
the oscillations between the di®erent cells. The authors
also demonstrated that it is necessary to have hormone
stimulation at each hepatocyte in order to have cell-cell
calcium signal propagation. In a subsequent paper [4]
they continued these studies, combining single-cell stud-
ies with experiments on cell populations isolated from
the peripheral and central zones of the liver cell plate.
They found strong evidence that the sequential pattern
of calcium responses to vasopressin in these multicellu-
lar rat hepatocyte systems was due to a gradient of cell
sensitivity (from cell to cell) for the hormone. Based

upon these experimental studies, two models have been
put forward in order to explain the observed results.

The ¯rst model is due to Dupont et al. who [5] stud-
ied a model based on junctional coupling of multiple
hepatocytes which di®er in their sensitivity to the hor-
monal stimulus. The model yielded intercellular waves
that were con¯rmed experimentally [5]. The authors
also presented experimental evidence that the degree
of synchronization is greater for the ¯rst few spikes, in
agreement with the prediction of their model. They also
presented evidence that suggested, within the context
of their model, that IP3 di®usion through gap junctions
plays the dominant role in the synchronization of inter-
cellular spiking (rather than Ca2+ di®usion).

An alternative model has also been proposed by HÄo-
fer [6] to explain the experimental results obtained in the
¯rst paper by Tordjmann et al [3]. HÄofer noted that this
experiment revealed a rather large variability in oscilla-
tor frequency between adjacent cells, which he argued
is likely to be of random nature. As a consequence he
studied the possibility that this originates from random
variations in the structural properties of cells (cell size,
cell shape, or ER content). In addition, Ca2+ was as-
sumed to be the second messenger [6]. His results were
in reasonable agreement with those of [3].

Both models are deterministic, described by di®er-
ential equations with boundary conditions for the cell
multiplets and with di®usion between cells. Such mod-
els, however, do not incorporate stochastic e®ects such
as °uctuations in the baseline values of calcium and vari-
ations in the amplitudes and widths of the spikes that
have been seen experimentally [3], [4].

To obtain a better explanation of the experimental
results, we have studied stochastic versions of the above
two models. Our simulation is based on a Monte Carlo
method due to Gillespie [7]. Stochastic models of in-
tracellular Ca2+ spiking for a variety of cell types have
been studied previously [8].

2 Ca2+ SYNCHRONIZATION OF
HETEROGENEOUS CELLS

We ¯rst study a stochastic version of the determinis-
tic model proposed by HÄofer [6] to explain the synchro-
nization of calcium oscillations in heterogeneous hepa-
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tocyte cells found by Tordjmann et al. [4]. He assumed
that the concentration of IP3 rapidly reaches a steady-
state value (which can di®er for di®erent cells) that is
treated as a parameter of the model. We will be consid-
ering in this study single cells, doublets and triplets.

Let xj and zj be, respectively, the cytosolic calcium
concentration and the free calcium content in cell j. The
latter is de¯ned as zj = xj +¯jyj, where yj denotes the
free calcium concentration in the ER.

After some simpli¯cation HÄofer obtained the follow-
ing deterministic model for the time evolution of the xj
and zj variables:
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The last term, proportional to °, denotes di®usion be-
tween cells. The index pairs (i; j)=(1,2) and (2,1). The
system can be easily generated to the case of more than
two cells. In these equations Pj is the IP3 concentration
in cell j. The IP3 R release function kr(xj; Pj) describes
the gating kinetics of the IP3 receptor and it is given by
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The parameters ½j, ® and ¯j de¯ne various structural
characteristics of the cell and account for the heteroge-
neous behavior of di®erent cells. Table 2 summarizes
the values we adopt for these parameters.

The above set of equations are deterministic and do
not consider at all the °uctuations that appear from the
fact that the chemical reactions do not occur uniformly
and continously in time. Gillespie's method consid-
ers speci¯cally that (a) the concentration of molecular
species can only vary by a discrete amount and (b) the
chemical reaction itself is a stochastic process that oc-
curs with a certain rate. In accordance with Gillespie's
method, we introduce the number populations of cell j
as Xj and Zj , such that the concentrations of the reac-
tants are obtained as: Xj = xj=W ;Zj = zj=W . Here
W is the volume of cytosolic compartment of the cell,
with °uctuation e®ects being most notable for small W .

Par. Value Par. Value

P 2.0 ¹M d1 0.3 ¹M
º0 0.2 ¹Ms¡1 d2 0.4 ¹M
ºc 4.0 ¹Ms¡1 d3 0.2 ¹M
K0 4.0 ¹M dp 0.2 ¹M
º4 3.6 ¹Ms¡1 da 0.4 ¹M
K4 0.12 ¹M k2 0.02 s¡1

º3 9.0 ¹Ms¡1 ½ 0.02 ¹m¡1

K3 0.12 ¹M ® 2.0
k1 40.0 s¡1 ¯ 0.1

Table 1. Typical simulation constants for model with
intercellular di®usion of Ca2+.

Following [6] we consider a spherical cell with a radius of
6 ¹m, with a cytosolic volume of about W = 300 ¹m3.

To determine the maximum value of ° we should use
in the stochastic model we simulated the experimen-
tal study of the doublet of hepatocytes, namely, ¯rst
with only one of the cell stimulated with a hormonal in-
put and then with both cells simultaneously stimulated.
From the experimental results we know that local perfu-
sion is not su±cient for coordinated oscillations. Global
perfusion of both cells, on the other hand, produces a
well synchronized Ca2+ oscillation in the two cells. In
our simulations we see that the two cells respond dif-
ferently, with di®erent periods of oscillations; in neither
case does the unstimulated cell show Ca2+ oscillations.
But if we stimulate both hepatocytes they respond with
well coordinated Ca2+ oscillations. This yields the value
of °max = 0:07 s¡1.

Next we study the behavior of two connected hepa-
tocytes. To simulate the experimental situation of two
slightly di®erent cells, we follow HÄofer and choose dif-
ferent structural parameters, with ¯1 = 0:15, ¯2 = 0:2,
The calcium oscillations in the two cells are totally un-
coordinated if the membrane permeability set to zero,
as should be the case. For value of the permeability
°=0:07 s¡1 we ¯nd 1:1 locking (Fig. 1).

Experiments also show the absence of coordination
among the calcium signals in connected hepatocytes at
low concentrations of stimuli. To simulate this situation
we applied a low stimulation level P = 1¹M to two cells,
with di®erent structural properties. We found that cal-
cium oscillations become synchronized with time. Al-
though this e®ect has not been seen experimentally,
it would be interesting to have experimental observa-
tions of calcium oscillations over long time intervals for
medium stimulation levels. It is possible that even cells
that are initially unsynchronized may become synchro-
nized later on.
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Fig. 1. Calcium oscillations for a doublet of cells with
the permeability constant ° = 0:07s¡1.

3 IP3 SYNCHRONIZATION VIA
HORMONAL SENSITIVITY

GRADIENT

The second model we study is due to Dupont et al.
[5] and considers IP3 as the second messenger respon-
sible for coordination of Ca2+ signaling in connected
hepatocytes. This model is based on the experimental
observation that the number of external receptors on
a hepatocyte membrane depends on its location in the
liver cell plate [4]. Thus the authors consider a model of
a multiplet of gap junction connected cells, with a small
variation in the individual cell frequencies. The dynam-
ics of each cell j is described by a set of three dynamical
variables Rdesj , xj and yj . These are the fraction of inac-

tive IP3 receptors, the concentration of cytosolic Ca2+

and the concentration of IP3, respectively. There is in-
tracellular di®usion of calcium and intercellular di®usion
of IP3, with the latter providing the coupling between

Par. Value Par. Value

k+ 25.0s¡1¹M¡4 Catot 60.0¹M
k¡ 2.5 £ 10¡3s¡1 KIP 1¹M
Kact 0.34¹M VK 7.5£10¡3¹M=s
k1 42.0s¡1¹M¡1 VPH 7.5£10¡2¹M=s
b 10¡4 KK 1¹M

KPH 10¹M ® 0.1
VMP 8.0¹M=s Kd 0.5¹M
Kp 0.4¹M FIP 0.35¹m=s

Table 2. Simulation constants for model with
intercellular di®usion of IP3:

adjacent cells. The equations of motion are taken to be
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At each boundary between two cells:

DIP
@y¡

@x
= DIP

@y+

@x
= FIP (y+ ¡ y¡): (7)

where the superscripts + and - indicate the IP3 concen-
tration at the right and left limits of the border, respec-
tively. All parameters are given in Table 3 We consider
cells 20¹m long, each containing 20 grid points.

We study, using Gillespie's method, a stochastic ver-
sion of this model for di®erent cell volumes and for a
range of values of the cell-cell permeability. We con-
sider W = 400¹m3. Figure 2 shows our results as well
as those for the deterministic limit W = 50; 000¹m3.
The results in the deterministic limit are consistent with
[5], as to be expected. In contrast to the deterministic
model where the induction time (latency of cell) depends
only on the stimulus strength, we ¯nd a distribution of
induction times in the stochastic model, due to °uctu-
ations in the calcium concentration. Fig. 3 shows the
distribution of induction times for one stimulated cell
with Vplc = 2£ 10¡3 ¹M=s. As there does not appear
to be any systematic experimental study of such a dis-
tribution, we have no data to compare our results with.
It is also the case that the calcium spikes in these experi-
ments have a width of 20¡30 s, which means that would
be di±cult to see °uctuations in the central position of
the spikes.

For two connected cells we determine the cell-cell
permeability following reference [5], such that a dou-
blet of cells, with only one cell doped with stimulant,
exhibits calcium oscillations only in the stimulated cell
(as has been shown experimentally). We have to use a
smaller value for the permeability than in the determin-
istic study because noise in the baseline produce spikes
in the second, non-stimulated cell if the permeability is
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Fig. 2. Results of calcium oscillations in one cell for
the stochastic version of Dupont et al. model for

values of W = 400; 50000. Notice that, as expected,
°uctuations decrease with increasing W and that the

deterministic limit is already well reproduced by
W = 50000. Initial conditions are resting states

corresponding to Vplc = 6:5£ 10¡4¹M/s.

larger then 0:35 ¹m/s. Another distinguishing feature
from the deterministic model is that stochastic e®ects
produce a variation in the spike amplitudes.

We ¯nd that two stimulated cells don't go out of
phase as rapidly as in the deterministic model. The
experimental results exhibit more synchronization be-
tween cells than in this stochastic model. However, the
stochastic model yields better agreement with experi-
ment in terms of the variation in amplitudes and period
variations.

4 CONCLUSION

We have studied calcium oscillations in connected
hepatocytes for two di®erent stochastic models of cal-
cium dynamics. We have solved these two models us-
ing a Monte Carlo approach, considering each term in
a model as a speci¯c reaction occurring with a certain
reaction rate. Our models are in better agreement with
experiment than are the deterministic models. Both
stochastic models exhibit baseline °uctuations and vari-
ations in peak heights. All the results of both determin-
istic models have been reproduced for their stochastic
versions in the limit of large volume, as should be the
case. We conclude that it is important to take into ac-
count stochastic e®ects in modeling calcium oscillations
in connected hepatocytes.
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Fig. 3. Distribution of induction times for one cell
with W=400, Vplc =2£10¡3¹M/s.
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