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Abstract. We review the role of linear instabilities on phase transition processes
induced by external spatiotemporal noise. In particular, we present a detailed linear
stability analysis of a standard Ginzburg-Landau model with multiplicative noise.
The results show the well-known constructive role of fluctuations in this case. The
analysis is performed for both non-conserved and conserved dynamics, correspond-
ing to order-disorder and phase separation transitions, respectively.

1 Introduction

Among all counterintuitive influence that external noise can exert on dynam-
ical systems, spatial ordering has received a special attention in last years.
Noise-induced patterns, for instance, have been observed in Swift-Hohenberg
models in the presence of external fluctuations [1-3]. The mechanism through
which the pattern-forming instability arises is linear, and the role of noise
(which as an external noise has to be interpreted in the Stratonovich sense)
is to renormalize the coefficients of the corresponding dispersion relation [4, 5].
Subsequent, investigations showed the existence of noise-induced phase tran-
sitions in field models! [6,7], some of which were attributed to a short-time
instability that survives through observable time scales due to entrainment
caused by spatial coupling [8]. However, it can also be shown in these cases
that the mechanism through which noise destabilizes the disordered phase is
again linear [9,10]. In the following pages, we review in detail the influence
of multiplicative noise in the linear destabilization of a homogeneous phase,
which leads to the appearance of a noise-induced phase transition. This linear
instability mechanism is not unique, since in some cases the destabilization
is driven by a nonlinear mechanism [11]. Nevertheless, those situations are
still a minority, and will not be considered in the following.

! Throughout this paper, we use the term “phase transition” in the statistical-
mechanics sense, to denote transitions between macroscopic states that display
universal properties in the thermodynamic limit.
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The stability analysis will be performed for two kinds of dynamics, the
first of which is a standard relaxational model that evolves towards one of
two phases (ordered or disordered) with no restriction. In the second case, the
dynamics is restricted by a conservation law of the spatially averaged field,
which leads in the ordered state to a process of phase separation. Whereas
the linear stability analysis of the former, non-conserved systems is so far
well known [4], that of the conserved case is introduced here in more detail.

2 Linear Stability Analysis

Transitions between two macroscopic phases in a given system occur due to
the loss of stability of the initial state for certain values of the control pa-
rameters. It is well known nowadays that some types of noise can modify the
stability of a state, and thus change the parameter values at which the tran-
sition takes place (i.e. the transition point). In many cases, the mechanism
through which the destabilization arises is linear, and therefore the location
of the corresponding transition point can be found by means of a linear sta-
bility analysis. This analysis consists on studying the dynamical behavior of a
perturbation applied initially to the state whose stability is being examined.
In a linear approximation, valid only at short times, these perturbations ei-
ther grow or decay exponentially in time. In the first case the initial state is
unstable, in the second one it is stable.

In the case of stochastic systems, the linear stability analysis needs to
be performed on a statistical moment of the pertubed state. Contrarily to
homogeneous (zero-dimensional) systems, the onset of instability for spa-
tially extended systems is the same for all statistical moments (at least when
moded—coupling contributions are discarded) [5]. It is especially interesting
in this case to perform the analysis on the structure function, since this
quantity (which is the Fourier transform of the second statistical moment) is
proportional to the intensity of scattered light in X-ray and neutron diffrac-
tion experiments. Moreover, for conserved systems (whose first moment is
constant in time) we are forced to study the second statistical moment (or a
higher-order one).

We will now perform the linear stability analysis of the structure function
for the particular case of models A and B (using the terminology of criti-
cal dynamics [12]) with spatiotemporal multiplicative noise. Model A is the
prototype of a non-conserved system, model B of a conserved one.

2.1 Model A

This nonconserved model is defined by

% = —ap — ¢*> + DV?p+ p&(r,t) +n(r,t), (1)
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where both additive and multiplicative noises are Gaussian with zero mean
and correlations

(n(r,t)n(r',t)) =2ed(r —r')d(t —t) (2a)
(Elr ) €', t))y =207 c(|r —r']) 8t — 1), (2b)

and ¢ and o2 are the additive and multiplicative noise intensities, respectively.
The function ¢(|r — r'|) is the spatial correlation function of the external
noise, which becomes §(r — ') in the limit of zero correlation length. This
external multiplicative noise can be understood as fluctuations in the control
parameter a.

The linear stability analysis is performed in a discrete version of the
model. In a d-dimensional discrete lattice of mesh size Az, (1) takes the

form: dé
d_tl =—a¢i— ¢} +D > Dijbj +nilt) + i &i(t) (3)
J
where ¢; = ¢(r;), 7; = Axi, i € [0,L — 1] and L is the number of cells
on each side of the regular lattice. The sum runs over the whole lattice, and
only one index is used to label all cells, independently of the dimension of
the system. D;; accounts for the discretized Laplacian operator

- 1
v~ Z Dij =33 Z (Onniyi — 2d0i) (4)
J J

where nn(i) represents the set of all sites which are nearest neighbors of cell
i. The discrete noises 7;(t) and &;(¢) are still Gaussian with zero mean and
correlations
5
(mi(t) (1)) =26 5 0(t = 1)) (5a)

(&) &) =20 iy 8t = '), (5b)

where ¢;_j| is a convenient discretization of the function c(|r — r'|), which
in the limit of zero correlation length becomes d;;/Axz.

In order to study the stability of the homogeneous state (¢;(t) = 0 Vi), we
linearize (3) and look for the dynamical equation of the two point correlation
function (¢;¢;):

(616) = ~20 (6105 + D 5= (Bugnts) + Bys(ous) +
+(&iditj) + (&0 0:) + (Midb;) + (n;ds)- (6)

The last four terms of this equation can be calculated with the help of
Novikov’s theorem [13], which in our case takes the forms:

G0s:0n0) =5 [aaoaen("Goa D) )
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o= fatonar (2489 e

Now, by formally integrating the linear terms of (3),

¢z(t) = ¢z(0) + / (_a¢z +D Z DZ] ¢] + 771( ) + ¢i(tl) fz(tl))

we can calculate the response functions at equal times ©
(?Zi((;)) . = ¢i(t) 0is , t??;il((;’)) . = djs - 9)
Making use of these expressions, (7a) and (7b) become
(&(0)gi(t)o Zo Clis) (0is(Dsds) + 075 (Dai))
a? (pi¢;) (co + i jy) (10a)
(i ()5 (t) Z S 0i0is = S0 (10b)

For the second statistical moment we thus have

%(@dh) (¢z¢y +D Z ( is ¢s¢y> + D]S<¢S¢l>)

+20’ <¢z¢]> (C|i,j‘ + Co) + Qﬁ 6ij . (11)

The structure function can be defined as

54(0) = Ty (u(P-u(0) (12)

where ggu(t) = a(ku, t) is the Fourier transform of ¢;(t)
~ ) 1 ) ~
_ d E —iri-ky 4. . _ E ir;-k,
¢H(t) - AZ’ - € ¢z ) ¢Z(t) - (LA.’IZ)d - € QSM ? (13)

with k, = 2Z-p, and p € [0,L — 1]%. From definitions (13) the following
relations can be easily verified

Z eiky,'("'if"’j) — dez] Z efi(kufku)"”i — Ld(s}ﬂ/ . (].4:)

By using definition (13) we can write the dynamical equation for the
structure function as

B _(F )Zel’”'("f—"”%@mm (15)
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and substituing (11)

A
dc% =—2aS,(t)+ D ( Lfﬂ) S encri=ro) ( is(Dsbi) + D]s(¢s¢l>)

1,5,8
d
+20’26 S (t)—+-2 2 & ik (Pi—Ti) o b 2 16
0 Sult) +20% - ) e iy (6i05) + 26 (16)
i,j

Now we have to rewrite the Laplacian terms. A Fourier-transformed Lapla-
cian operator does not couple variables with different moment. In fact, it can
be seen that the Laplacian term leads to

=~

(%)d S eI D (bags) = Dy Sult) | (17

1,3,8

where the following relation has been taken into account

S Bualded) = g €™ e T DB} (19

v,p

and 5u = fmz (E\ilil cos(ky - r;) — 1) can be understood as the Fourier

transform of the discrete Laplacian. On the other hand, using definition (13)
and relations (14), the last contribution of the multiplicative noise in (16)
can be written as

Az\* il (1 —ms
2 <T> Yoty ((gigy) = o dZ v Su-v(t) , (19)
4,

Therefore, taking into account (17) and (19), the equation for the structure
function becomes finally

45, (1) s 1
= —2 2 2 14 -V bl 2
o wu Su(t) +2e+ 20 LA 2‘/: CvSu—v(t) (20)

with the additional dispersion relation w, = a — olecy — Dﬁu . In the con-
tinuous and thermodynamic limit (Az — 0 and L — o0), the dynamical
equation for the structure function is

aS(k, 1) o2
o = —2w(k) S(k, t)+25+2(2 T

/dk’ c(|k—K'|)S(K',t) (21)
with
w(k) = a—o0?¢(0) + D k? (22)

Looking at this dispersion relation, it is readily seen that perturbations grow
when w(k) < 0 for some interval of k values. Hence, the homogeneous state
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¢(r,t) = 0 is stable if w(k) > 0 V k. This is satisfied for a — % ¢(0) > 0 and
thus we can define an effective control parameter

et = a — o2 ¢(0) (23)

such that for aeg > 0, the homogeneous state ¢(r,¢) = 0 is stable. The
transition point is then
a; = 0 ¢(0) , (24)

which in discrete space is written as a; = o02cg. This transition point in-
creases with noise intensity and decreases with noise correlation length be-
cause c(0) ~ A~%. In the deterministic case (¢> = 0 and ¢ = 0) a; = 0
and thus, for ¢ > 0 the disordered homogeneous state ¢(r,t) = 0 is stable,
whereas for a < 0 this disordered state is unstable. In the presence of multi-
plicative noise a; = 0 ¢(0) > 0, and hence the homogeneous disordered state
is stable for a smaller region of the control parameter than in the determin-
istic case. Hence, fluctuations in the control parameter induce order in the
system.

There are other techniques that allow us to find the onset of instability.
One of them is the study of the stationary state of the structure function
equation given by the linear stability analysis [see (21)]. In contrast with the
above discussion, this method takes into account the mode-coupling term
which depends also on the multiplicative noise. For the particular case of
multiplicative noise white in space [¢(|k — k'|) = 1], the steady state for the
structure function can be obtained from (21)

1
St (k) = o) [e 4+ 0% Gy (0)] (25)
where Gy (r) = (2m)~? [ dke™™ ™ Sy (k) is the correlation function. By inte-
grating again the above equation, we find that the value G4 (0) is

ey 1 dk
Gst(o)—mv ’Y—W/m- (26)

Hence, the resulting stationary structure function is

e’ , €

Sse(k) = o) 3

C1-o2y’ (27)
where ¢’ is a renormalized additive noise intensity. In the subcritical region,
where nonlinear terms are supposed to be negligible, it is expected that this
linear result agrees satisfactorily with the behavior of the full nonlinear model.
Nevertheless this stationary solution will diverge for yo? = 1, which indicates
that at that point the result is not valid anymore. Hence, the value of the
control parameter at which the stationary structure function diverges is the
transition point a = a;. The condition yo? = 1 explicitly reads,

o? dk
1= 2
(2m)? /?Rd ar — o2 + Dk? (28)
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which is the same as the one found by Becker and Kramer [4]. It is possible
to see that the contribution of the mode-coupling term [last term in (21)] to
the transition point is quite small (of order "—; in d = 1). Other methods such

as mean—field approximations also give corrections to the transition point of
order D™".

2.2 Model B

The conserved model corresponding to the one studied in the previous Section
is defined by

8¢(r, t) — VQ

5 [ap + ¢* — DV?¢p+ ¢ &(r,t)] +n(r,t), (29)

where ¢(r,t) represents, for instance, the local difference of concentrations
of each phase in the case of a binary alloy. Multiplicative noise represents
fluctuations in the control parameter a. Both additive and multiplicative
noises are Gaussian, with zero mean and a correlation for the additive noise
given by

(n(r,t)n(r't")) = =2e VZ6(r — ') §(t — t') (30)

and (2b) for multiplicative noise. The discrete version of the model in a d—
dimensional lattice of mesh size Ax is:

d¢z

ZDzs a¢s+¢3 DZDS]¢]+¢S§S() +7h'(t): (31)

where ¢; = ¢(r;), as before. The discrete noises 7;(t) and &;(¢) are still
Gaussian, with zero mean and correlations given by

D;
(i) m; (1) = =2 32 Lot —t) (32)
and (5b).
As done in the previous Section, we will study the stability of ¢;(t) = 0 Vi,
taking only into account the linear terms in (31). In this case, the dynamical
equation for the two-point correlation function (¢;¢;) is

aw] Zle A(jbs) — DY Dam(dmj) + (905 | + (midhs)

+ ZDys l_ ¢z¢s -D Z ﬁsm<¢m¢i> + <¢t¢s£s> + <77]¢z> (33)

Novikov’s theorem allows us to calculate all noise terms in the previous equa-
tion. The procedure is the same as before [see (7a)—(10b)] and the results
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are
<¢j¢s£s> =0’ Z 5smc|s—m|<¢m¢j> +0’ Z ﬁjmc|s—m|<¢m¢s> (343)
by
(mids) = =5 (34b)

Hence, for the second statistical moment we have

¢l¢] ZDzs [a ¢]¢s DZ ﬁsm(¢m¢j> + 022 ﬁsmc|s—m|<¢m¢j>

+o Z D]mc|s m| <¢m¢s

+ ZD]S l ¢z¢s -D Z 5sm<¢m¢z>

5 5ij
Azgd ’

+07 Z ﬁsmc|sfm|<¢m¢i> +0? Z ﬁimc|sm|<¢m¢s>] -2 (35)

We now look for the equation of the structure function. Substituing (35) into
(15) and considering relations (14) and (18), we finally find

~

= 212),1 la — lN)u (D — 0201) + 02 Z lN)Omcm] S, (t)

m

45,1
dt

22 =
+20° D, (AxL)™"Y " 2,_,S,(t) — 2¢D,, (36)

In the continuous and thermodynamic limit, we have

95(k,t) 2 2 ) 07 PN / /
=-2 2 -2 —
- (k) S(h. ) + 20k~ 20 )d/dk &k — K') S(k', 1)
(37)
with the dispersion relation

wk) =a+0” [Ve(r)] _, + (D —0®c(0)) k* . (38)

In discrete space, this relation reads
wy =a+2do*(c; —cy) — (D — o cl)ﬁu . (39)

The dispersion relation indicates that for w(k) > 0 Vk, the homogeneous
null state is stable. This occurs for a + ¢ [V? c(|r|)]T:0 > 0 so that, as in
the previous Section, we can define an effective control parameter

et = a+ 0? [V? c(|1‘|)]r:0 , (40)

such that the homogeneous null state is stable for positive values of ae.
Hence, the onset of stability is now given by

a; = —o’ [V2 c(|7’|)]T:0 , (41)
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which in a discrete space is written as
at:2d0'2(60—61) . (42)

As in model A, the transition point in the presence of multiplicative noise
is positive and therefore, fluctuations in the control parameter induce or-
der in the system. However, the effective control parameter is different be-
tween the two models. In model A, the dependence of the transition point
on the spatial correlation of the noise is merely due to a natural “soften-
ing” effect of noise correlation [when the noise is spatially correlated, its
effective intensity is 02 ¢(0) ~ o2 A™%. In model B, the Laplace operator
introduces a more complicated dependence on the spatial correlation of the
noise, a; ~ o2\~ (3*9_ Moreover, the expression of w(k) for model B (38) has
a noise dependence term that can be considered as a modification of the spa-
tial coupling parameter D. We can thus define an effective spatial coupling
parameter Doy = D — 02 ¢(0). These results are consistent with those coming
from a mean-field approximation in the limit of infinite coupling [14].

As it has been done in the previous Section, we can look for the stationary
state of the structure function and find a condition for the onset of instability
which takes into account, in contrast with the above discussion, the coupling
term between Fourier modes. For the case of multiplicative noise white both
in time and space (c(|k — k'|) = 1), the stationary structure function is

8’

Sst(k) - m ’

(43)
with &' given by expressions (27) and (26). This solution differs from that
corresponding to model A in the expression of w(k) [compare (22) and (38)].
The transition point is given by yo? = 1, for which the stationary structure
function diverges, and is equal at first order to the result given in (41).

For the particular case of a spatial correlation ¢(|r|) of gaussian type

1
el = g o0 (—K) , (44)

whose width A characterizes the correlation length of the noise, and which
becomes a delta function for A — 0, the transition points for models A and
B are, respectively, [see (24) and (41)]

o? B do?

A = ="
4t = (2m)a/z xd’ e (2m)d/2 xd+2 (45)

3 Conclusions

Noise-induced phase transitions for which linear destabilization is the domi-
nant mechanism have been examined in detail by means of a linear stability
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analysis. The study is performed on both non-conserved and conserved mod-
els. In the two cases, noise is seen to have an ordering effect in the system,
although the influence is seen to be different in each situation. The role of
spatial correlation of the noise is somewhat simple in the non-conserved case,
but clearly non-trivial in the conserved model.
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