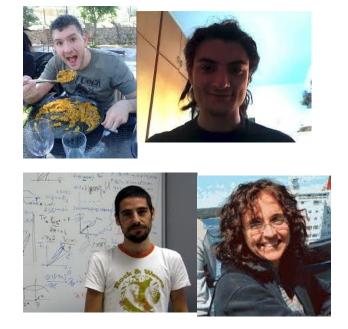
Non-adiabaticity and irreversible entropy production

F. Plastina

Università della Calabria



## After lots of work discussions with:



## N. Lo Gullo and A. Alecce



F. Galve and R. Zambrini





G. Francica, T.J.G. Apollaro, G. Falcone



## **Outline:**

- 1. Thermodynamic transformations
- 2. Isothermal process: Irreversible work
- 3. Adiabatic process: Inner friction
- 4. Entropy production
- 5. Use of a non-equilibrium reference state
- 6. Conclusions

based on: F.P. et al., PRL 113, 260601 (2014)

## Setting the stage: Thermodynamic transformation

Work parameter 
$$\lambda(t)$$
:  $\lambda(t=0) = \lambda_i \longrightarrow \lambda(\tau) = \lambda_f$ 

#### **Closed quantum system :**

the Hamiltonian  $H[\lambda(t)]$  generates the evolution  $U(\tau, 0)$ Initial (equilibrium) state  $\rho_i = e^{-\beta_i H_i} / Z[\lambda_i, \beta_i]$  $\lambda_i$ reversible isothermal versible adiabatic final state thermalization Unitary transformation  $\rho_{\tau} = U(\tau, 0)\rho_i U^{\dagger}(\tau, 0)$  $\beta_{p} =$ 

## Work and Jarzynski relation

#### Probability density for the work done on the system:

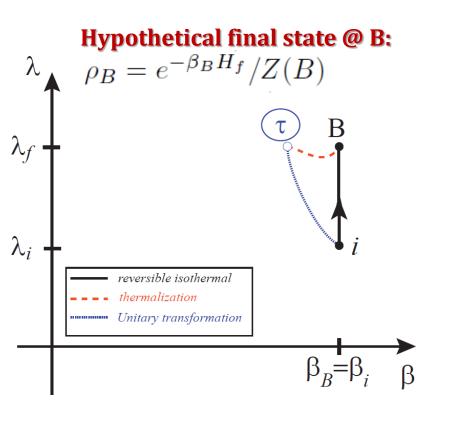
$$p(w) = \sum_{n,m} P_n^{(i)} P_{n \to m}^{(\tau)} \delta(w - \varepsilon_m^{(f)} + \varepsilon_n^{(i)})$$
  
with  $P_n^{(i)} = Z_i^{-1} e^{-\beta_i \varepsilon_n^{(i)}}$  and  $P_{n \to m}^{(\tau)} = \left| \left\langle \varepsilon_m^{(f)} \right| U(\tau, 0) \left| \varepsilon_n^{(i)} \right\rangle \right|^2$ 

#### **Fluctuation relation**

$$\left\langle e^{-\beta_i w} \right\rangle = e^{-\beta_i \Delta F}$$

where 
$$\Delta F = F[\lambda_f, \beta_B] - F[\lambda_i, \beta_i]$$

Loosely speaking, the irreversible work gives a measure of the irreversibility.



### **Relation with the relative entropy**

$$\langle w_{irr} \rangle = \frac{1}{\beta_B} D(\rho_\tau || \rho_B)$$

S. Deffner and E. Lutz, PRL10

#### Thermalization

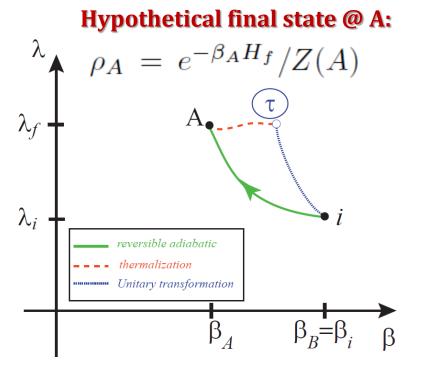
$$\langle w_{irr} \rangle = T_B(S_B - S_i) - \langle Q_{\tau \to B}^{th} \rangle$$

where 
$$\langle Q_{\tau \to B}^{th} \rangle = \operatorname{tr} \{ (\rho_B - \rho_\tau) H_f \}$$

## **Adiabatic Transformation (reversible and quasi-static !)**

Define Point A by the relation:  $P_m^{(i)} = P_m^{(A)}$  (\*)

(\*) This is possible iff all of the energy gaps scale by the same ratio  $\beta_i/\beta_A$ 



#### Work in the ideal case

$$\langle w_{i \to A} \rangle = \mathcal{U}_A - \mathcal{U}_i \equiv \sum_m P_m^{(i)} (\varepsilon_m^{(f)} - \varepsilon_m^{(i)})$$

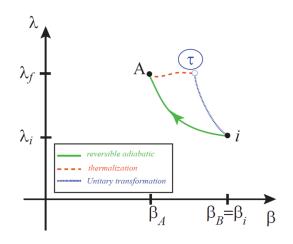
**Inner friction** 

$$\langle w_{fric} \rangle = \langle w \rangle - \langle w_{i \to A} \rangle$$

## **Inner friction**

 due to unwanted transitions one would typically associate with heat.

Indeed, it is the heat the system would release in thermalizing towards A :



Performing an adiabatic transformation in a finite time, the amount of work that `gets lost' is larger when the system is brought far and far away from equilibrium.

#### Thermalization

$$\langle w_{fric} \rangle \equiv - \left\langle Q_{\tau \to A}^{th} \right\rangle$$

## **Relation with the relative entropy**

$$\left\langle w_{fric}\right\rangle = \frac{1}{\beta_A} D(\rho_\tau || \rho_A)$$

#### **Relation with the Bures angle**

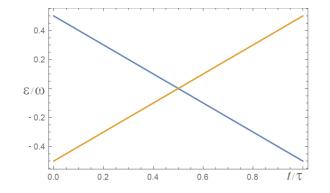
$$\beta_A \left\langle w_{fric} \right\rangle \ge \frac{8}{\pi^2} \mathcal{L}^2(\rho_\tau, \rho_A)$$

## an example with negative temperature

## Consider a qubit in a t-dependent slowly rotating magnetic field

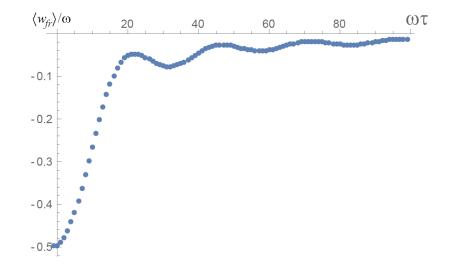
$$H = \omega(h_x \sigma_x + h_z \sigma_z)$$

$$h_x = \left(\frac{1}{2} - \frac{t}{\tau}\right) \cos\left(\frac{\pi}{2} \frac{t}{\tau}\right), \quad h_z = \left(\frac{1}{2} - \frac{t}{\tau}\right) \sin\left(\frac{\pi}{2} \frac{t}{\tau}\right)$$



 $\beta_A < 0$  if a level crossing is present

$$\langle w_{fric} \rangle < 0$$



## **Entropy production**

Relation with the irreversible work :

$$\langle w_{irr} \rangle - \langle w_{fric} \rangle = (\mathcal{U}_A - \mathcal{U}_B) - T_i (S_A - S_B)$$

## Link with the entropy production

**Ideal case:** 

$$S_i = S_A \qquad \square \qquad \Rightarrow \qquad \beta_A \mathcal{U}_A - \beta_i \mathcal{U}_i = \beta_A F_A - \beta_i F_i$$

#### **Actual case:**

we can build the stochastic variable  $s = \beta_A \varepsilon_m^{(f)} - \beta_i \varepsilon_n^{(i)}$ 

with prob. density: 
$$p(s) = \sum_{n,m} P_n^{(i)} P_{n \to m}^{(\tau)} \delta(s - \beta_A \varepsilon_m^{(f)} + \beta_i \varepsilon_n^{(i)})$$
  
and average value:  $p(s) = \rho_{n,m} e_{n,m} e_{n,m} e_{n,m} \delta(s - \beta_A \varepsilon_m^{(f)} + \beta_i \varepsilon_n^{(i)})$ 

$$\langle s \rangle = \beta_A \operatorname{tr} \{ \rho_\tau H_f \} - \beta_i \mathcal{U}_i$$

Notice that, in the ideal case :

$$\langle s \rangle = \beta_A \mathcal{U}_A - \beta_i \mathcal{U}_i = \beta_A F_A - \beta_i F_i$$

## Inner friction 👄 irreversible entropy

fluctuation relation:

$$\left( \left\langle e^{-s} \right\rangle = \sum_{n,m} P_n^{(i)} P_{n \to m}^{(\tau)} e^{-(\beta_A \varepsilon_m^{(f)} - \beta_i \varepsilon_n^{(i)})} = \frac{Z_A}{Z_i} \equiv e^{-(\beta_A F_A - \beta_i F_i)} \right)$$

**Entropy production** 

$$\sigma \rangle := \langle s \rangle - (\beta_A F_A - \beta_i F_i) \ge 0$$

**Inner friction** 

=

$$\langle \sigma \rangle \equiv \beta_A \langle w_{fric} \rangle \equiv D(\rho_\tau || \rho_A)$$

1

## **Cumulants of the entropy**

The cumulants of the stochastic variable s

$$C_{1} = \langle s \rangle$$

$$C_{2} = \langle s^{2} \rangle - \langle s \rangle^{2}$$

$$C_{3} = \langle s^{3} \rangle - 3 \langle s^{2} \rangle \langle s \rangle + 2 \langle s \rangle^{3}$$

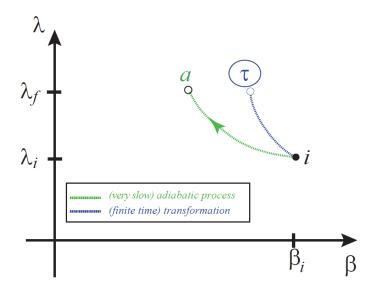
obey the relation

$$-(\beta_A F_A - \beta_i F_i) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} C_n$$

Then, the average entropy production is :

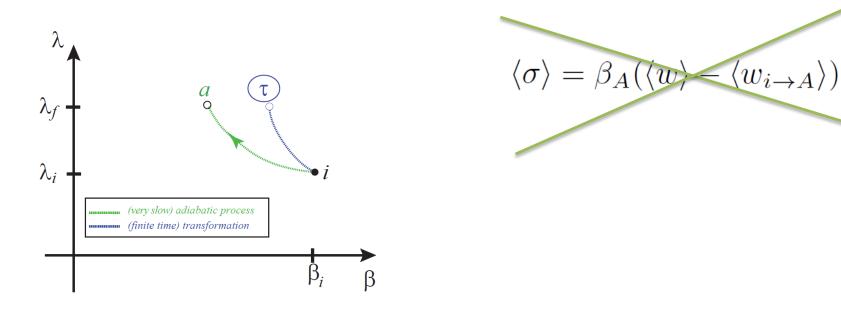
$$\langle \sigma \rangle = \beta_A \langle w_{fric} \rangle = \frac{C_2}{2} - \frac{C_3}{6} + \dots,$$

## What if A is not an equilibrium state ?

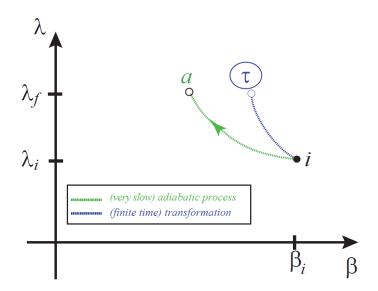


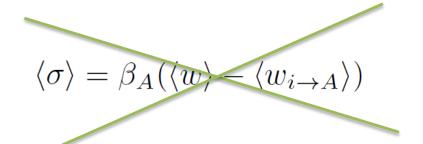
$$\langle \sigma \rangle = \beta_A(\langle w \rangle - \langle w_{i \to A} \rangle)$$

## What if A is not an equilibrium state?



## What if A is not an equilibrium state?





#### (non-equilibrium) adiabatic reference state:

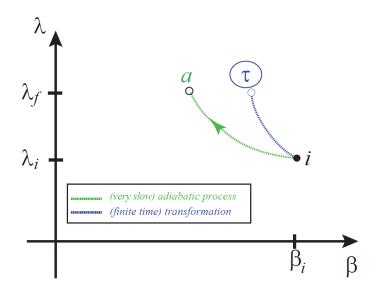
$$\rho_a = \sum_n P_n^{(i)} \left| \varepsilon_n^{(f)} \right\rangle \left\langle \varepsilon_n^{(f)} \right|$$

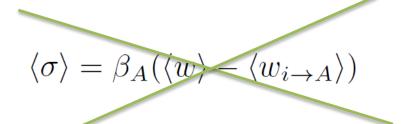
#### **Entropy production :**

$$P(\sigma) = \sum_{n,m} P_n^{(i)} P_{n \to m}^{(\tau)} \,\delta\left(\sigma - \sigma_{mn}\right)$$

$$\sigma_{mn} = \beta_A \varepsilon_m^{(f)} - \beta_i \varepsilon_n^{(i)} - (\beta_A F_A - \beta_i F_i) = \beta_i \left( \varepsilon_m^{(i)} - \varepsilon_m^{(i)} \right)$$

## What if A is not an equilibrium state?





#### (non-equilibrium) adiabatic reference state:

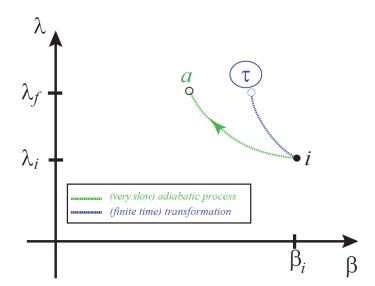
$$\rho_a = \sum_n P_n^{(i)} \left| \varepsilon_n^{(f)} \right\rangle \left\langle \varepsilon_n^{(f)} \right|$$

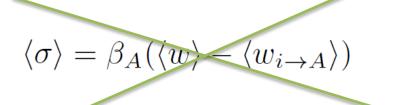
#### **Entropy production :**

$$P(\sigma) = \sum_{n,m} P_n^{(i)} P_{n \to m}^{(\tau)} \delta\left(\sigma - \sigma_{mn}\right)$$

$$\sigma_{mn} = \beta_A \varepsilon_m^{(f)} - \beta_i \varepsilon_n^{(i)} - (\beta_A F_A - \beta_i F_i) = \beta_i \left( \varepsilon_m^{(i)} - \varepsilon_m^{(i)} \right)$$

## What if A is not an equilibrium state ?





#### (non-equilibrium) adiabatic reference state:

$$\rho_a = \sum_n P_n^{(i)} \left| \varepsilon_n^{(f)} \right\rangle \left\langle \varepsilon_n^{(f)} \right|$$

#### **Entropy production :**

$$P(\sigma) = \sum_{n,m} P_n^{(i)} P_{n \to m}^{(\tau)} \delta\left(\sigma - \sigma_{mn}\right)$$

$$\sigma_{mn} = \beta_A \varepsilon_m^{(f)} - \beta_i \varepsilon_n^{(i)} - \left(\beta_A F_A - \beta_i F_i\right) = \beta_i \left(\varepsilon_m^{(i)} - \varepsilon_m^{(i)}\right)$$

**Crook's like relation** 

$$P(\sigma) = P_{back}(-\sigma) e^{\sigma}$$

#### under micro-reversibility assumption

## **Entropy production – general case**

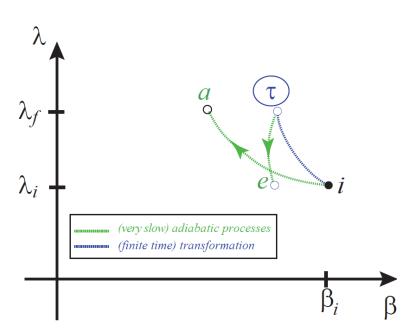
## 1. fluctuation relation:

# $\left\langle e^{-\sigma} \right\rangle = 1$

## 2. Expression as a relative entropy :

$$\langle \sigma \rangle = D(\rho_\tau || \rho_a)$$

## 3. connection with work:



**3.1** 
$$\langle \sigma \rangle = \beta_i \left( \langle w_{i \to \tau} \rangle + \langle w_{\tau \to e} \rangle \right)$$
  
**3.2**  $\operatorname{cov} \{\sigma, w\} = \beta_i \frac{\operatorname{var} \{w_{i \to \tau}\} - \operatorname{var} \{w_{\tau \to e}\}}{2} + \frac{\operatorname{var} \{\sigma\}}{2\beta_i}$ 

## Summary :

- inner friction in terms or relative entropy
- relation with heat exchange during thermalization
- fluctuation relation and entropy production