1/11

Quantum thermodynamics for a model of an expanding universe

David Edward Bruschi

Formerly: Racah Institute of Physics and Quantum Information Science Centre the Hebrew University of Jerusalem the Holy Land

Currently: York Centre for Quantum Technologies, Department of Physics University of York the United (for the moment) Kingdom

April 24, 2015

arXiv:1409.5283

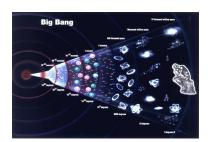
In collaboration with: N. Liu, J. Goold, I. Fuentes, V. Vedral, K. Modi

Relativistic and Quantum Physics

 ${\sf Relativity} + {\sf Quantum\ Information} = {\sf Relativistic\ Quantum\ Information}$

Important achievements in general relativistic scenarios

- Three laws of black holes;
- Cosmology and big bang;
- Firewall issues.



Outlook

- (Classical) Thermodynamics useful in the study of the Universe.
- Quantum processes in the universe do not necessary involve large numbers of constituents.
- Important: Von N. Entropy of the Universe cannot change.

Outlook, aims and motivations

Outlook

- (Classical) Thermodynamics useful in the study of the Universe.
- Quantum processes in the universe do not necessary involve large numbers of constituents.
- Important: Von N. Entropy of the Universe cannot change.

Aim

Use quantum thermodynamics to understand work, entropy and energy flows in relativistic and cosmological setups.

Outlook, aims and motivations

Outlook

- (Classical) Thermodynamics useful in the study of the Universe.
- Quantum processes in the universe do not necessary involve large numbers of constituents.
- Important: Von N. Entropy of the Universe cannot change.

Aim

Use quantum thermodynamics to understand work, entropy and energy flows in relativistic and cosmological setups.

Motivations

- The Universe is relativistic and quantum system and processes can involve small numbers of constituents.
- Mainly: We cannot compute energy, entropy and work flows in relativistic quantum systems.

Expanding universe line/metric element

$$ds^2 = \Omega^2(\tau) \left[-d\tau^2 + dx^2 + \ldots \right], \qquad g_{\mu\nu} = \Omega^2(\tau) \left(-1, 1, \ldots \right)$$

Simple cosmology model

Expanding universe line/metric element

$$ds^2 = \Omega^2(\tau) \left[-d\tau^2 + dx^2 + \ldots \right], \qquad g_{\mu\nu} = \Omega^2(\tau) \left(-1, 1, \ldots \right)$$

Scalar quantum field

$$\phi(t,x) = \oint_{t} \left[u_{k} a_{k} + u_{k}^{*} a_{k}^{\dagger} \right], \quad \left[a_{k}, a_{k'}^{\dagger} \right] = \delta^{d}(k - k')$$

Expanding universe line/metric element

$$ds^2 = \Omega^2(\tau) \left[-d\tau^2 + dx^2 + \ldots \right], \quad g_{\mu\nu} = \Omega^2(\tau) \left(-1, 1, \ldots \right)$$

Scalar quantum field

$$\phi(t,x) = \oint_{\mathcal{L}} \left[u_k a_k + u_k^* a_k^{\dagger} \right], \qquad \left[a_k, a_{k'}^{\dagger} \right] = \delta^d(k - k')$$

Frequency shift and choice of conformal factor

$$\omega_{\mathsf{in}/\mathsf{out}} = \sqrt{k^2 + m\,\Omega^2(\tau_{\mp\infty})}, \qquad \Omega(\tau) = \sqrt{1 + \epsilon\,\big(1 + \mathsf{tanh}\big(\sigma\,\tau\big)\big)}$$

Simple cosmology model

Expanding universe line/metric element

$$ds^2 = \Omega^2(\tau) \left[-d\tau^2 + dx^2 + \dots \right], \quad g_{\mu\nu} = \Omega^2(\tau) (-1, 1, \dots)$$

Scalar quantum field

$$\phi(t,x) = \oint_{t} \left[u_{k} a_{k} + u_{k}^{*} a_{k}^{\dagger} \right], \quad \left[a_{k}, a_{k'}^{\dagger} \right] = \delta^{d}(k - k')$$

Frequency shift and choice of conformal factor

$$\omega_{\mathsf{in}/\mathsf{out}} = \sqrt{k^2 + m\,\Omega^2(\tau_{\mp\infty})}, \qquad \Omega(\tau) = \sqrt{1 + \epsilon\,\big(1 + \mathsf{tanh}\big(\sigma\,\tau\big)\big)}$$

Bogoliubov transformations and squeezing

$$a_{\mathrm{out},k} = \cosh r_k \, a_{\mathrm{in},k} + e^{i\,\theta_k} \, \sinh r_k \, a_{\mathrm{in},-k}^\dagger, \qquad \tanh r_k = \frac{\sinh \left(\pi \frac{\omega_{\mathrm{out}} - \omega_{\mathrm{in}}}{2\sigma}\right)}{\sinh \left(\pi \frac{\omega_{\mathrm{out}} + \omega_{\mathrm{in}}}{2\sigma}\right)}$$

Work and energy of two mode squeezing

All couple of modes (k, -k) decouple. We can focus on a single couple and redefine $a_{\text{in},k} \equiv a_{\text{in}}$ and $a_{\text{in},-k} \equiv b_{\text{in}}$.

Initial Hamiltonian

$$H_{\rm in} = \omega_{\rm in} \left[a_{\rm in}^{\dagger} a_{\rm in} + b_{\rm in}^{\dagger} b_{\rm in} + \frac{1}{2} \right]$$

Final Hamiltonian

$$H_{\mathrm{out}} = \omega_{\mathrm{out}} \left[a_{\mathrm{out}}^{\dagger} a_{\mathrm{out}} + b_{\mathrm{out}}^{\dagger} b_{\mathrm{out}} + \frac{1}{2} \right]$$

Work and energy of two mode squeezing

All couple of modes (k, -k) decouple. We can focus on a single couple and redefine $a_{\text{in},k} \equiv a_{\text{in}}$ and $a_{\text{in},-k} \equiv b_{\text{in}}$.

Initial Hamiltonian

$$H_{\rm in} = \omega_{\rm in} \left[a_{\rm in}^{\dagger} a_{\rm in} + b_{\rm in}^{\dagger} b_{\rm in} + \frac{1}{2} \right]$$

Final Hamiltonian

$$H_{\mathrm{out}} = \omega_{\mathrm{out}} \left[a_{\mathrm{out}}^{\dagger} a_{\mathrm{out}} + b_{\mathrm{out}}^{\dagger} b_{\mathrm{out}} + \frac{1}{2} \right]$$

Start with an initial *thermal* state ρ with n_i particles. The work W done by spacetime is

Work performed

$$W = \text{Tr} ((H_{\text{out}} - H_{\text{in}}) \rho)$$

= $\omega_{\text{out}} n_c + (\omega_{\text{out}} - \omega_{\text{in}}) (n_i + 1)$

with n_c particles that are created.

The "inner friction"

An adiabatic process would lead to a work cost W_{ad} of the form

Adiabatic work

$$W_{\rm ad} = (\omega_{\rm out} - \omega_{\rm in})(n_i + 1)$$

The "inner friction"

An adiabatic process would lead to a work cost W_{ad} of the form

Adiabatic work

$$W_{\rm ad} = (\omega_{\rm out} - \omega_{\rm in})(n_i + 1)$$

which allows us to find the inner friction W_{fric} for our case as

Inner friction

$$W_{\text{fric}} = W - W_{\text{ad}}$$

= $\omega_{\text{out}} n_{\text{c}}$

The "inner friction"

An adiabatic process would lead to a work cost W_{ad} of the form

Adiabatic work

$$W_{\rm ad} = (\omega_{\rm out} - \omega_{\rm in})(n_i + 1)$$

which allows us to find the inner friction W_{fric} for our case as

Inner friction

$$W_{\text{fric}} = W - W_{\text{ad}}$$

= $\omega_{\text{out}} n_{\text{c}}$

Our last step

We proceed to show that W_{fric} can be interpreted as an entropic quantity

Forward process

$$p_{\rm in,out} = |\langle n_{\rm out} | n_{\rm in} \rangle|^2 \langle n_{\rm in} | \rho | n_{\rm in} \rangle$$

$$p_{\text{out,in}} = |\langle n_{\text{in}} | n_{\text{out}} \rangle|^2 \langle n_{\text{out}} | \rho | n_{\text{out}} \rangle$$

Entropy and inner friction

Forward process

$$p_{\rm in,out} = |\langle n_{\rm out} | n_{\rm in} \rangle|^2 \langle n_{\rm in} | \rho | n_{\rm in} \rangle$$

$$p_{\text{out,in}} = |\langle n_{\text{in}} | n_{\text{out}} \rangle|^2 \langle n_{\text{out}} | \rho | n_{\text{out}} \rangle$$

Fluctuation relation:
$$s_{\text{in,out}} \coloneqq -\log(n_{\text{out}}|\rho|n_{\text{out}}) + \log(n_{\text{in}}|\rho|n_{\text{in}})$$

$$p_{\text{in,out}} = p_{\text{out,in}} e^{s_{\text{in,out}}}$$

Entropy and inner friction

Forward process

$$p_{\rm in,out} = |\langle n_{\rm out} | n_{\rm in} \rangle|^2 \langle n_{\rm in} | \rho | n_{\rm in} \rangle$$

Backward process

$$p_{\text{out,in}} = |\langle n_{\text{in}} | n_{\text{out}} \rangle|^2 \langle n_{\text{out}} | \rho | n_{\text{out}} \rangle$$

Fluctuation relation:
$$s_{\text{in,out}} := -\log(n_{\text{out}}|\rho|n_{\text{out}}) + \log(n_{\text{in}}|\rho|n_{\text{in}})$$

$$p_{\text{in,out}} = p_{\text{out,in}} e^{s_{\text{in,out}}}$$

Forward process

$$P_{\text{in,out}}(s) = \sum_{n_{\text{in}}, n_{\text{out}}} p_{\text{in,out}} \delta(s - s_{\text{in,out}})$$

$$P_{\text{out,in}}(s) = \sum_{n_{\text{in}}, n_{\text{out}}} p_{\text{out,in}} \delta(s - s_{\text{out,in}})$$

Entropy and inner friction

Forward process

$$p_{\rm in,out} = |\langle n_{\rm out} | n_{\rm in} \rangle|^2 \langle n_{\rm in} | \rho | n_{\rm in} \rangle$$

Backward process

$$p_{\text{out,in}} = |\langle n_{\text{in}} | n_{\text{out}} \rangle|^2 \langle n_{\text{out}} | \rho | n_{\text{out}} \rangle$$

Fluctuation relation:
$$s_{in,out} := -\log(n_{out}|\rho|n_{out}) + \log(n_{in}|\rho|n_{in})$$

$$p_{\text{in,out}} = p_{\text{out,in}} e^{s_{\text{in,out}}}$$

Forward process

$$P_{\text{in,out}}(s) = \sum_{n_{\text{in}}, n_{\text{out}}} p_{\text{in,out}} \delta(s - s_{\text{in,out}})$$

$$P_{\text{out,in}}(s) = \sum_{n_{\text{in}}, n_{\text{out}}} p_{\text{out,in}} \delta(s - s_{\text{out,in}})$$

Average entropy:
$$K(X||Y) := -\sum_n p_X(n) [\log p_Y(n) - \log p_X(n)] \ge 0$$

$$s = K(P_{\text{in,out}}||P_{\text{out,in}})$$

Initial state

$$\rho = \frac{e^{-\beta_{in} H_{in}}}{\mathcal{Z}}$$

Entropy

$$s_{\rm in,out} = \frac{\omega_{\rm in}}{T} n_c$$

Results

Initial state

$$\rho = \frac{e^{-\beta_{in} H_{in}}}{\mathcal{Z}}$$

Entropy

$$s_{\rm in,out} = \frac{\omega_{\rm in}}{T} n_c$$

Final result

$$s = \frac{\omega_{\rm in}}{T} n_c$$

This is our main result.

Extendable result

Number of created particles $n_c = \sinh^2 r$. This result can be extended to:

- * Unruh effect: $\tanh r = \exp\left[\frac{\hbar \omega}{k_B T_U}\right]$;
- * Schwarschild black hole: $\tanh r = \exp\left[\frac{\hbar \omega}{k_B T_H}\right]$;
- * Analogue gravity models.

Conclusions and outlook

Conclusions

- * We have studied applications of quantum thermodynamics to setups that appear in quantum field theory;
- * Have found some entropic quantity that increases in (simple) cosmological processes;
- * The results apply to different cosmological and quantum field theoretical scenarios.

Outlook

- * Can teach us more about the physics at the overlap of relativity and quantum mechanics;
- * Drive future theoretical efforts to uncover novel physics;
- * Hopefully: provide energy balance relations in quantum field theoretical scenarios.

Thank You.

THE UNIVERSITY of York