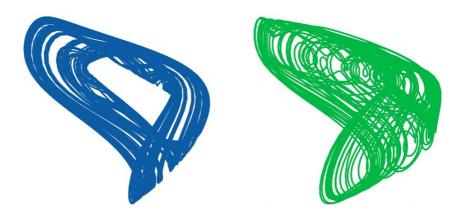
Inferring Untrained Dynamics of Complex Systems using Adapted Recurrent Neural Networks

Mirko Goldmann, Claudio R. Mirasso, Ingo Fischer, and Miguel C. Soriano



Dynamics Days Europe 2022 25 August 2022

IFISC (CSIC-UIB) *

 IFISC: Institute for Cross-Disciplinary Physics and Complex Systems in Mallorca.

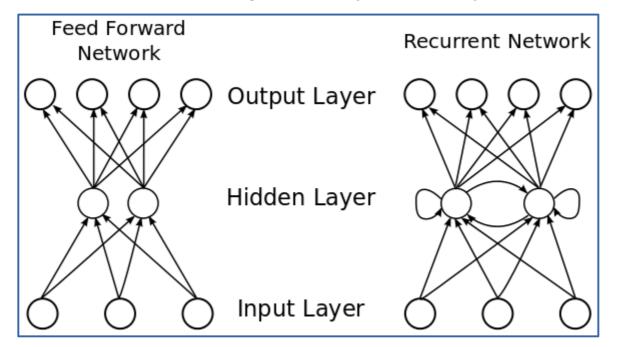
 Joint research Institute of the University of the Balearic Islands (UIB) and the Spanish National Research Council (CSIC) created in 2007.

Complex Dynamics @ IFISC

Apostolos Argyris Irene Estébanez Moritz Pflüger Claudio R. Mirasso Mirko Goldmann Lucas Talandier Silvia Ortín **Ingo Fischer** Jyoti P. Deka

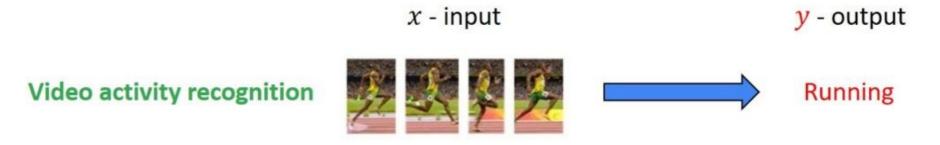
Cap Formentor, Mallorca

Machine Learning meets Dynamical Systems



Feed forward Neural Network can approximate any continuous function (≥1 hidden layers + non-linear activations)

Recurrent Neural Networks can approximate dynamical systems

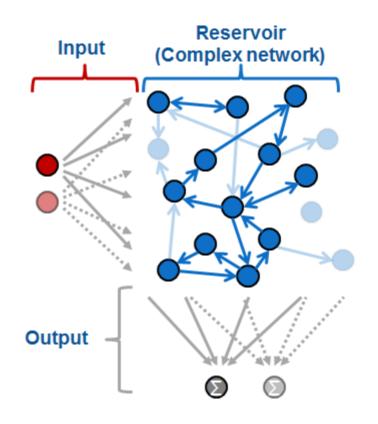


25th August 2022 | page 4/23

UNIT OF EXCELLENCE

MARIA DE MAEZTU

- Consider a "black-box (reservoir)" complex recurrent network
- The input nodes connected randomly to reservoir nodes
- Output weights are trained
- Generate nonlinear transient responses to input
- Mapping to a high-dimensional space



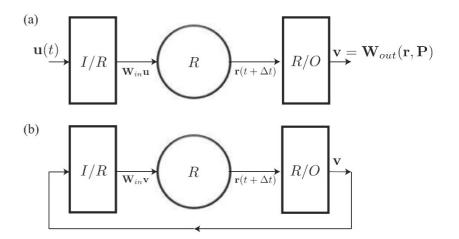
Can emulate chaotic dynamical systems!

Reservoir Computing: Example *

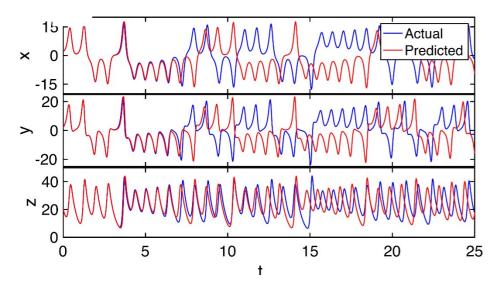
Lorenz model

$$\dot{x} = 10(y - x),$$

 $\dot{y} = x(28 - z) - y,$
 $\dot{z} = xy - 8z/3.$



 $\mathsf{R} \to \mathsf{Echo}$ State Network (popular variant of RC)



	Actual Lorenz system	R1 system
Λ_1	0.91	0.90
Λ_2	0.00	0.00
Λ_3	-14.6	-10.5

J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott. "Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data." Chaos 27, 121102 (2017).

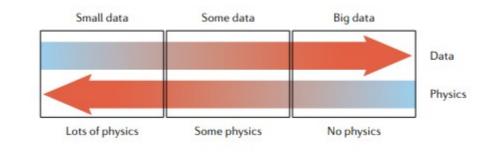
25th August 2022 | page 6/23

Infer unseen/untrained dynamics of systems by learning from a single example?

physical models are parametrized → changing parameter leads to new behavior/dynamics

 $\dot{x}(t) = F(x(t), c)$

- ML: statistical learning without being aware of parametrization of the physical model
- Physics-informed machine learning
 - Using physical knowledge to constrain the learning
 - biases on:
 - training data
 - loss function
 - network topology



G. E. Karniadakis et al., "Physics-informed machine learning." Nature Reviews Physics 3, 422-440 (2021).

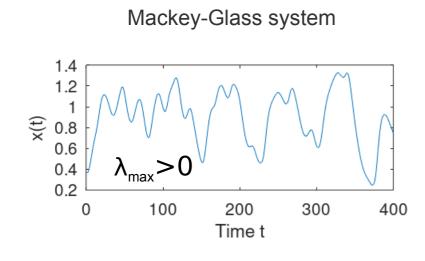
Delay Systems

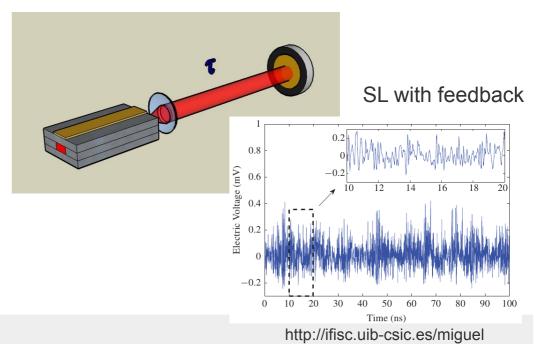
$$\dot{x}(t) = F\left(x(t), x(t-\tau); p\right)$$

- delays appear where signal propagation is finite
 - neuroscience, photonics, epidemiologic models and control problems
- rely on a continuous history function
 - infinite dimensional

$$\mathbf{h} \in [-\tau, 0]$$

for long delays these systems can become chaotic



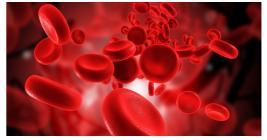


Mackey-Glass system *

Time lag can be substantial in physiological systems

Example: following a loss of **blood cells**, it can take many days before new blood cells can be produced (activation, differentiation, and proliferation of the blood stem cells)

$$\frac{dx}{dt} = \beta \frac{x_{\tau}}{1 + x_{\tau}^{n}} - \gamma x, \quad \gamma, \beta, n > 0,$$



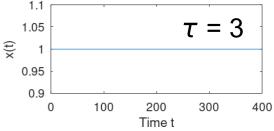
Mackey-Glass equation (for the **nonlinear production control** function)

- X: concentration (assumed non-negative for all times) of circulating blood cells
- β , γ and *n*: constants controlling the production of these cells
- X_{τ} , $x(t-\tau)$

For some intermediate values of x_{τ} the production rate would be adequate If $0 < x_{\tau} \ll 1$ individual would be sick and unable to generate enough blood cells

If $1 \ll x_{\tau}$ person would have too many blood cells so that the production rate would once again be low

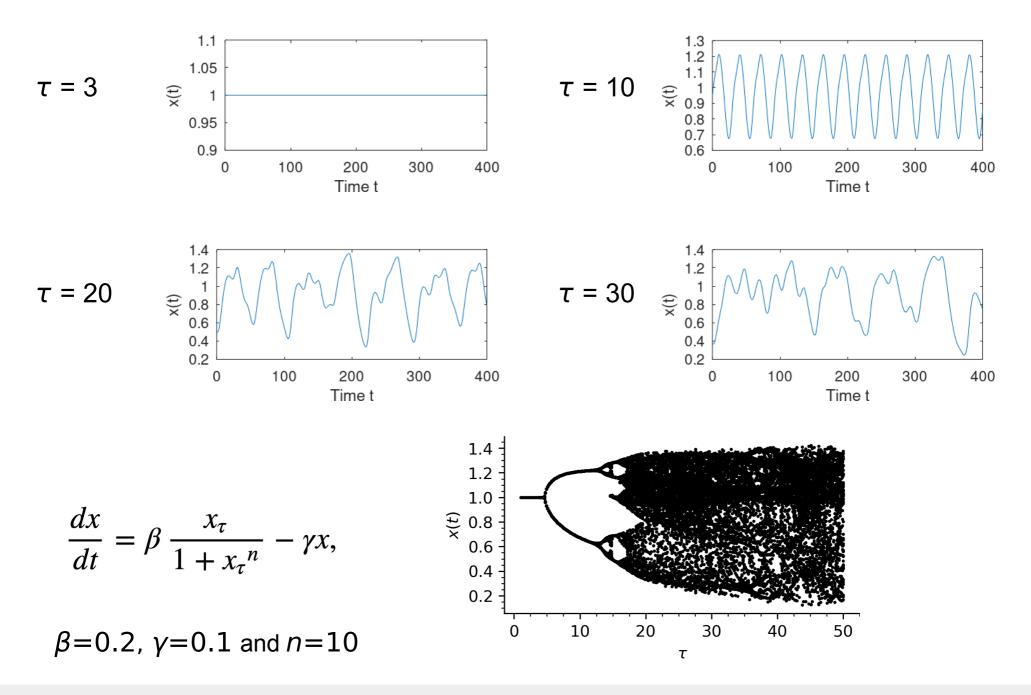
$$\beta = 0.2, \gamma = 0.1 \text{ and } n = 10$$



Leon Glass and Michael Mackey (2010), Scholarpedia, 5(3):6908.

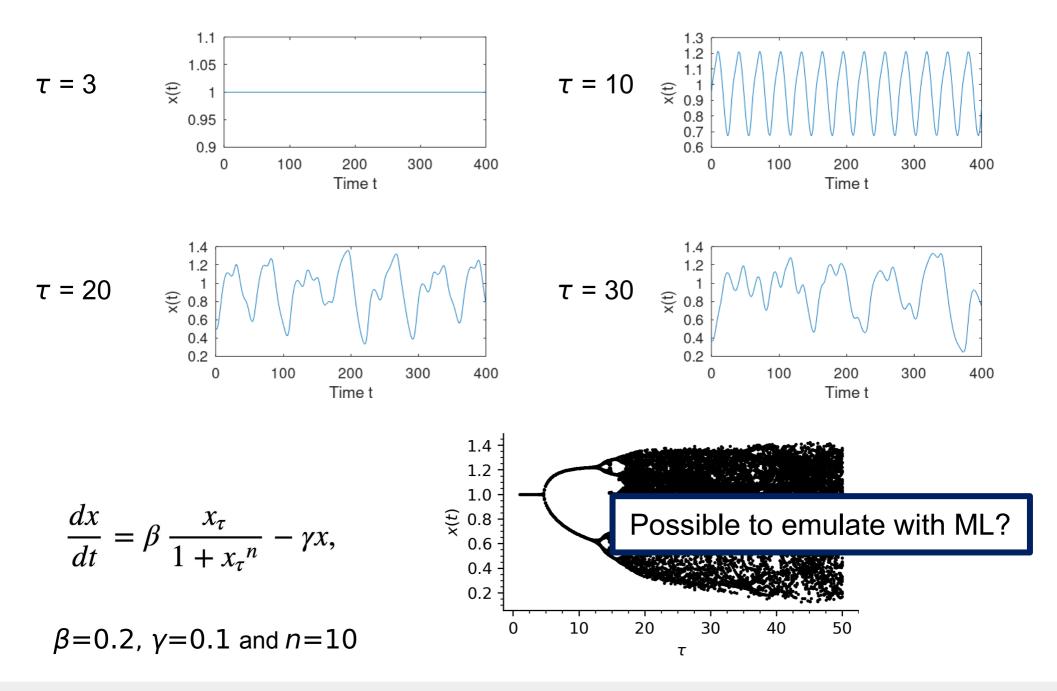
25th August 2022 | page 9/23

Mackey-Glass dynamics *



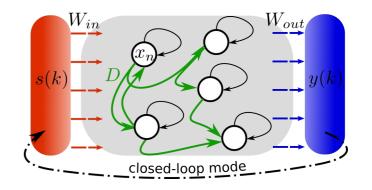
25th August 2022 | page 10/23

Mackey-Glass dynamics *



25th August 2022 | page 11/23

Delayed Echo State Networks Incorporate a delay into the neural network $\vec{x}(n+1) = \alpha \vec{x}(n) + \beta \tanh(\mathbf{W}\vec{x}(n-D) + \gamma \mathbf{W}_{in}s(n) + \mathbf{W}_b)$



Optimal prediction performance for data of Mackey Glass system (τ) at D= τ

- Optimizing hyperparameters with bayesian optimization
- Closed-loop mode: training the output layer and feeding back prediction

$$\vec{x}(n+1) = \alpha \vec{x}(n) + \beta \tanh(\mathbf{W}\vec{x}(n-D) + \gamma \mathbf{W}_{in}W_{out}x(n) + \mathbf{W}_b)$$

After training reconfigure network by setting delay D to untrained values \rightarrow Inferring unseen dynamical regimes

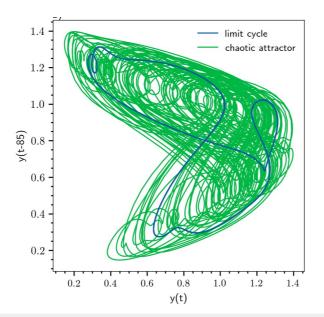
Inference of Dynamical Regimes

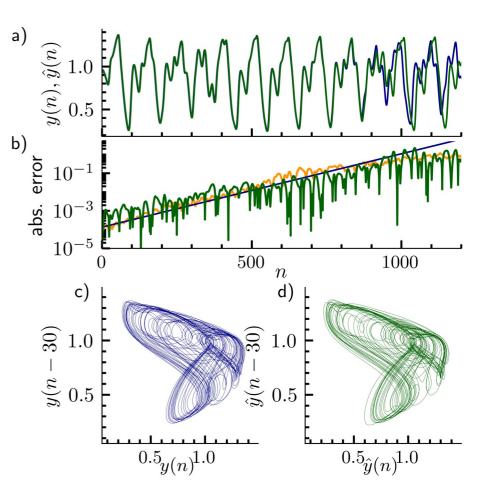


- Training for a long delay $D, \tau = 100$
- After training scanning D
- Learning one size enables to infer the entire bifurcation diagram

Possible to emulate with ML!

- Training at a delay of D=100
 - After training: reducing the delay length to D=30
 - Inference reveals unseen/untrained chaotic attractor
 - Lyapunov exponent can be precisely derived from the reservoir
- Method even reveals multistabilities of the Mackey-Glass system

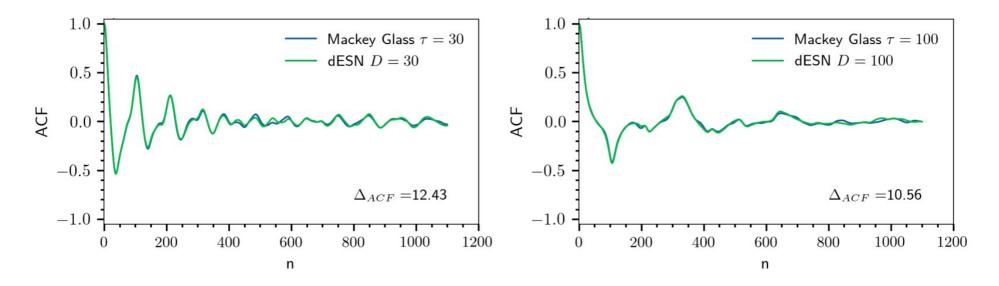




≁

Autocorrelation function (ACF)

$$r_{\tau} = \frac{c_{\tau}}{c_0}, \quad c_{\tau} = \frac{1}{N} \sum_{t=1}^{N-\tau} (x_t - \langle X \rangle) (x_{t+\tau} - \langle X \rangle)$$



- Adapted Echo State Network reproduces the correlation properties
 - \rightarrow for training example D, τ = 100
 - \rightarrow for unseen dynamics D, τ = 30

$$\Delta_{ACF} = \sum_{i} |ACF_{MG} - ACF_{dESN}|$$

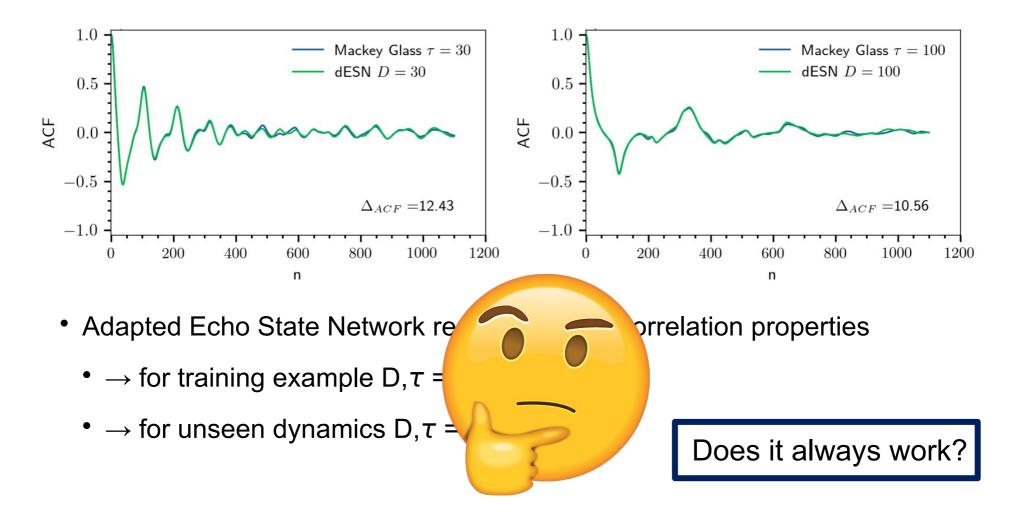
25th August 2022 | page 15/23

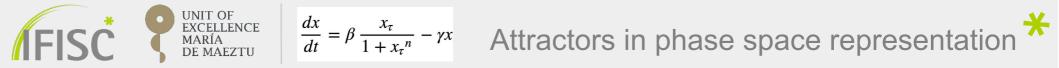
UNIT OF EXCELLENCE

MARÍA DE MAEZTU

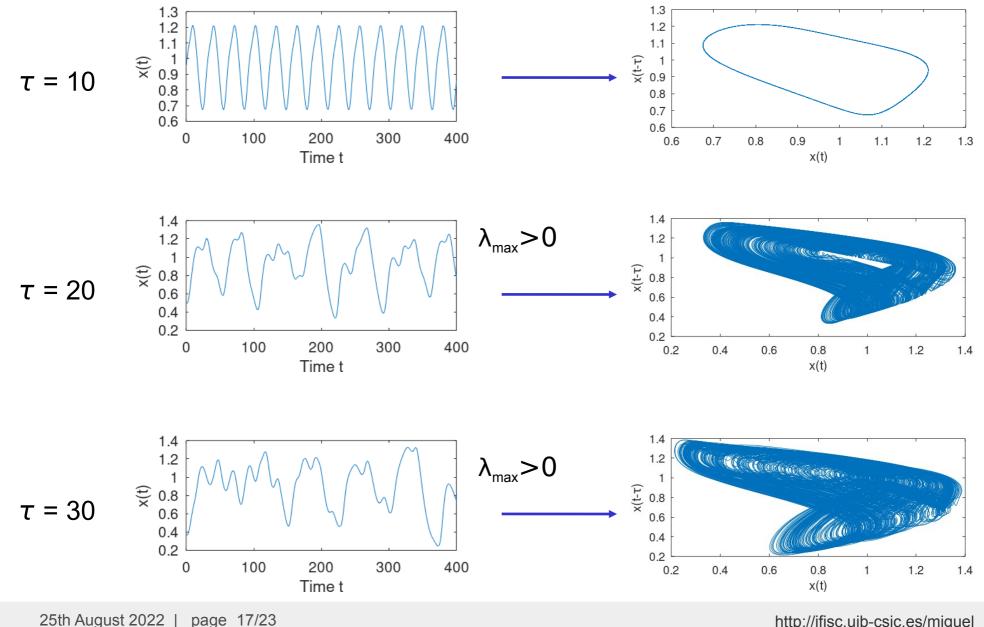
Autocorrelation function (ACF)

$$r_{\tau} = \frac{c_{\tau}}{c_0}, \quad c_{\tau} = \frac{1}{N} \sum_{t=1}^{N-\tau} (x_t - \langle X \rangle) (x_{t+\tau} - \langle X \rangle)$$

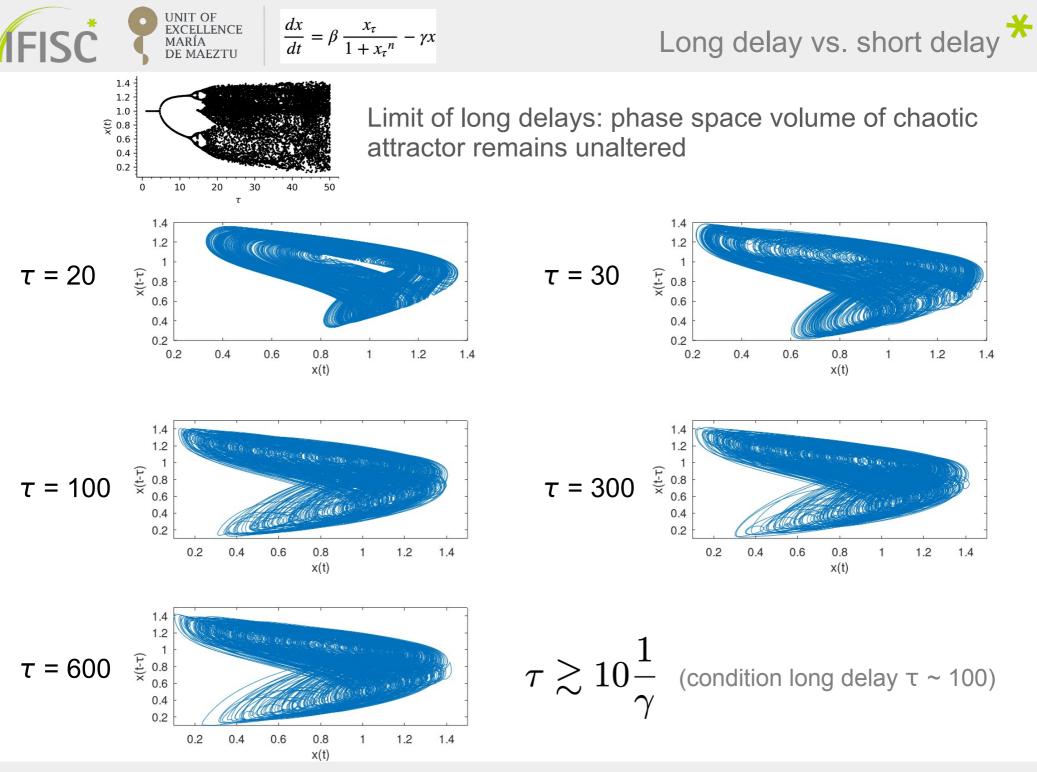




Mackey-Glass attractors: from stable to periodic and chaotic dynamics

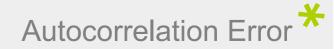


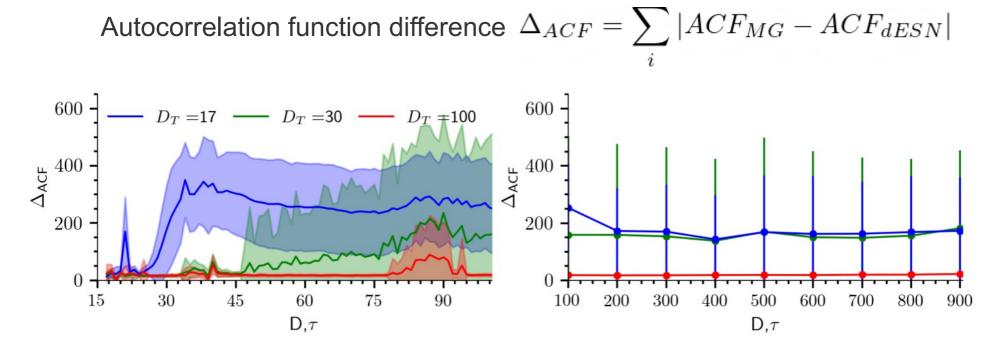
http://ifisc.uib-csic.es/miguel



²⁵th August 2022 | page 18/23

http://ifisc.uib-csic.es/miguel



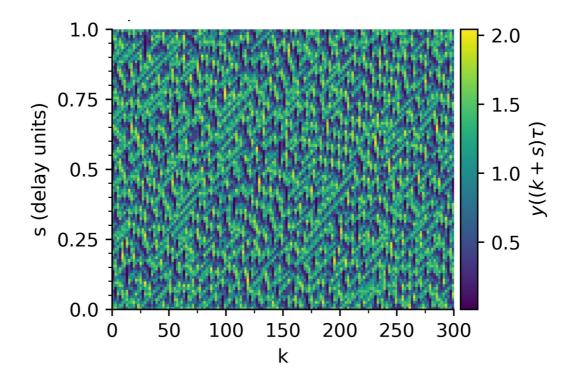


- Training for long delays (D, τ = 100) → inference works for short and long delays
- Training for short delays (D, τ = 17 or 30) \rightarrow inference works in the neighborhood of the training example

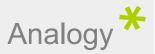
Knowledge of the dynamical properties useful for ML!

Time Translational Symmetry in Delay Systems

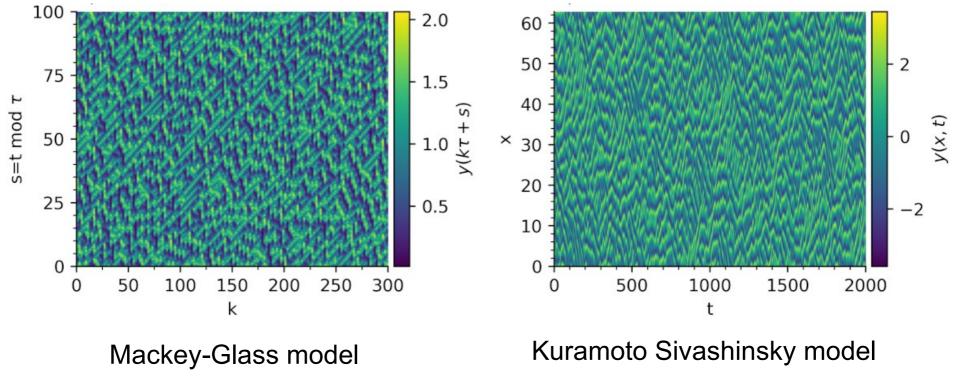
- dynamics of the system do not change over time
- using the quasi-space representation
 - $\ensuremath{\,\bullet\,}$ \rightarrow dynamics are independent along quasi-space s



$$\dot{y}(t) = -y(t) + \frac{3y(t-100)}{(1+y(t-100)^{10})}$$



Analogy: Delay systems - 1D Spatially Extended systems

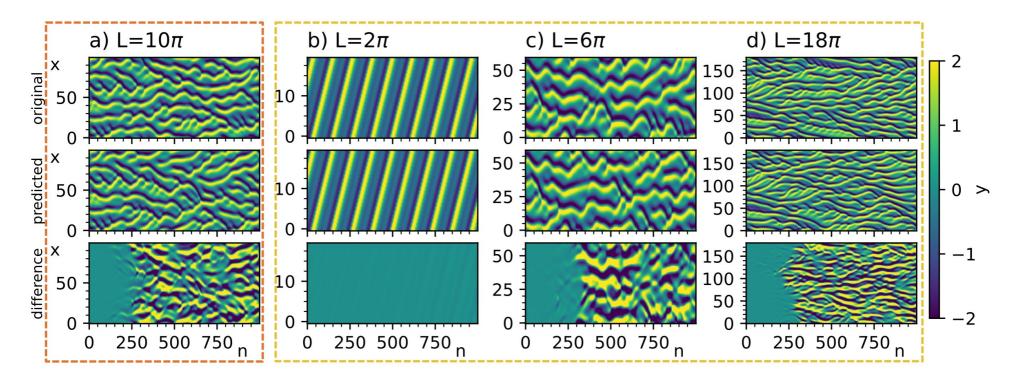


 $\dot{y}(t) = -y(t) + \frac{3y(t-100)}{(1+y(t-100)^{10})}$

 $y_t = -yy_x - y_{xx} - y_{xxxx},$

where y(x,t) is a scalar field

Inferring untrained dynamics of a Kuramoto Sivashinsky model



- Learning one spatial extension and exploiting spatial translational symmetry enables to infer the dynamics for other spatial extensions (assuming periodic boundary conditions)
- Importance of symmetries → analogy between delay and spatio-temporal systems

• **Symmetries** can be used for far reaching inferences of dynamical systems with adapted neural networks

→ Infer unseen/**untrained dynamical regimes**

- → High generalization ability
- Informed machine learning methods can tackle highly complex dynamical systems
- Plenty of room for novel findings at the interface between machine learning and dynamical systems

THANK YOU

M. Goldmann et al., "Inferring untrained complex dynamics of delay systems using an adapted echo state network", arxiv:2111.03706

